Journal of the American Chemical Society
Page 4 of 5
1
2
3
4
5
6
7
8
9
(5) (a) Trnka, T. M.; Day, M. W.; Grubbs, R. H. Angew. Chem. Int. Ed.
2001, 40, 3441−3444 and (b) Trnka, T. M. Ph.D. dissertation, California
Institute of Technology, Pasadena, California, 2003.
(6) (a) Fomine, S.; Ortega, J. V.; Tlenkopatchev, M. A. J. Mol. Catal. A
Chem. 2007, 263, 121−127 and (b) Fomine, S.; Tlenkopatchev, M. A.
Appl. Catal. A Gen. 2009, 355, 148−155.
(7) Vasiliu, M.; Arduengo, A. J.; Dixon, D. A. J. Phys. Chem. C 2014,
118, 13563−13577.
fluoroolefins. This newly demonstrated catalytic transformation
indicates that fluoroolefins are no longer exotic substances of
olefin metathesis. Furthermore, these findings prove the feasibility
of a new synthetic methodology for organofluorine chemistry,
such as cross metathesis with two fluoroolefins and ROMP with a
cyclic fluoroolefin via Fischer carbene interconversion. Further
investigations related to this work are now in progress and will be
reported in due course.
(8)
A number of successes with α,ωꢀdiene, one of whose
carbon−carbon double bonds bears a fluorine atom, indicated certain
compatibility for ringꢀclosing metathesis, see ref. 3 and references therein.
(9) For example, see: (a) Kirsch, P. Modern Fluoroorganic Chemistry:
Synthesis, Reactivity, Applications; WileyꢀVCH: Weinheim, Germany,
2004, (b) Chambers, R. D. Fluorine in Organic Chemistry; Blackwell:
Oxford, U.K., 2004, and (c) Uneyama, K. Organofluorine Chemistry;
Blackwell: Oxford, U.K., 2006.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
Experimental procedures and compound characterization data.
This material is available free of charge via the Internet at
(10) Recently, Ogoshi and coꢀworkers have intensively studied
transitionꢀmetalꢀcatalyzed transformation of fluoroolefins, see: (a) Ohashi,
M.; Kambara, T.; Hatanaka, T.; Saijo, H.; Doi, R.; Ogoshi, S. J. Am. Chem.
Soc. 2011, 133, 3256−3259, (b) Ohashi, M.; Saijo, H.; Shibata, M.;
Ogoshi, S. Eur. J. Org. Chem. 2013, 443−447, (c) Ohashi, M.; Kamura,
R.; Doi, R.; Ogoshi, S. Chem. Lett. 2013, 42, 933−935, (d) Ohashi, M.;
Shibata, M.; Saijo, H.; Kambara, T.; Ogoshi, S. Organometallics 2013, 32,
3631−3639, (e) Saijo, H.; Sakaguchi, H.; Ohashi, M.; Ogoshi, S.
Organometallics 2014, 33, 3669−3672, (f) Ohashi, M.; Ogoshi, S.
Catalysts 2014, 4, 321−345, (g) Ohashi, M.; Shibata, M.; Ogoshi, S.
Angew. Chem. Int. Ed. 2014, 53, 13578−13582, and (h) Saijo, H.; Ohashi,
M.; Ogoshi, S. J. Am. Chem. Soc. 2014, 136, 15158−15161.
(11) Unfortunately, no perfluororuthenacyclobutane species that was a
plausible intermediate for olefin metathesis with TFE was detected in the
product mixture. For other perfluorometallacyclobutanes, see: (a) Iron
complexes; Karel, K. J.; Tulip, T. H.; Ittel, S. D. Organometallics 1990, 9,
1276−1282, (b) cobalt complexes; Harrison, D. J.; Lee, G. M.; Leclerc, M.
C.; Korobkov, I.; Baker, R. T. J. Am. Chem. Soc. 2013, 135, 18296−18299,
and (c) Vicic and coꢀworkers have reported platinum complexes during
the preparation of this manuscript; Xu, L.; Solowey, D. P.; Vicic, D. A.
Organometallics in press, DOI: 10.1021/acs.organomet.5b00045.
(12) The term “Fischer carbene” refers to a metal complex bearing a
divalent carbene ligand featuring at least one αꢀheteroatom substitutent
(e.g., halogen atom, −OR, −SR, or −NR2) with loneꢀpair electrons.
(13) Louie, J.; Grubbs, R. H. Organometallics 2002, 21, 2153−2164.
(14) Likewise, Macnaughtan has proposed a similar system involving
interconversion between acetoxycarbene and other Fischer carbenes in her
Ph.D. dissertation, see ref. 4c.
AUTHOR INFORMATION
Corresponding Author
yusukeꢀtakahira@agc.com
Notes
CAUTION! The International Agency for Research on Cancer
(IARC) classifies TFE into “Group 2A: Probably carcinogenic to
humans”,22 and hence all manipulations using TFE must be
carried out with care.
CAUTION! Under the representative reaction condition,
fluoroolefins may ignite in the presence of oxygen, and hence air
must be completely removed from the operating system (e.g.,
NMR tube and autoclave).
The authors declare the following competing financial interests:
The authors are employees of Asahi Glass Co., Ltd. (AGC) and
patent applications on this work have been filed.
ACKNOWLEDGMENTS
Prof. Graham Sandford (Durham University) is acknowledged for
helpful discussions and critical comments during the preparation
of this communication. The authors are also grateful to colleagues
at AGC: Dr. Takashi Okazoe, Mr. Kunio Watanabe, and Mr.
Daisuke Jomuta for initial support and continuous encouragement
on this work, Mr. Hiroshi Hatano and Mr. Nobuyuki Otozawa for
helpful discussions, Mr. Yasunori Sasaki for technical assistance
with handling of fluoroolefins, Mr. Tatsuya Miyajima and Ms.
Yuki Nakamura for assistance with NMR, and Mr. Toshifumi
Kakiuchi, Dr. Yoji Nakajima, and Ms. Aya Serita for assistance
with HRMS.
(15) In the case of cross metathesis using 1ꢀhaloethylene and 1,2ꢀ
dihaloethylene, Grela and Johnson reached
a similar conclusion
independently, see: (a) Sashuk, V.; Samojłowicz, C.; Szadkowska, A.;
Grela, K. Chem. Commun. 2008, 2468−2470 and (b) ref. 4b.
(16) We have separately confirmed that catalytic cross metathesis
between enol ether and VdF actually occurred, see eqs. S1 and S2 in the
SI.
(17) Although the preparation of 3Aa has been reported previously, the
NMR data are not available, see: Yang, Q.; Njardarson, J. T. Tetrahedron
Lett. 2013, 54, 7080−7082.
REFERENCES
(18) Only (E)ꢀ and (Z)ꢀ4Ba were inseparable chromatographically, see
the SI.
(19) For compound characterization data, see the SI.
(1) Handbook of Metathesis; Grubbs, R. H., Ed.; WileyꢀVCH:
Weinheim, Germany, 2003.
(2) Olefin Metathesis: Theory and Practice; Grela, K., Ed.; Wileyꢀ
VCH: Weinheim, Germany, 2014.
(3) In contrast to directly fluorinated olefins, i.e., fluoroolefins,
perfluoroalkylꢀsubstituted ethylenes showed certain compatibility for
olefin metathesis, see: Fustero, S.; SimónꢀFuentes, A.; Barrio, P.; Haufe,
G. Chem. Rev. 2015, 115, 871−930 and references therein.
(4) (a) Macnaughtan, M. L.; Johnson, M. J. A.; Kampf, J. W.
Organometallics 2007, 26, 780−782, (b) Macnaughtan, M. L.; Gary, J. B.;
Gerlach, D. L.; Johnson, M. J. A.; Kampf, J. W. Organometallics 2009, 28,
2880−2887, and (c) Macnaughtan, M. L. Ph.D. dissertation, The
University of Michigan, Ann Arbor, Michigan, 2009.
(20) For an example of ethenolysis and analogous alkenolysis, see:
Nickel, A.; Ung, T.; Mkrtumyan, G.; Uy, J.; Lee, C. W.; Stoianova, D.;
Papazian, J.; Wei, W. H.; Mallari, A.; Schrodi, Y.; Pederson, R. L. Top.
Catal. 2012, 55, 518−523.
(21) Authentic NMR data for 5Ac in C6D6 have not been reported
previously, and we hence tentatively determined the formation by NMR
and HRMS analyses of the reaction mixture. See the SI for details.
(22) BenbrahimꢀTallaa, L.; LaubyꢀSecretan, B.; Loomis, D.; Guyton, K.
Z.; Grosse, Y.; El Ghissassi, F.; Bouvard, V.; Guha, N.; Mattock, H.;
Straif, K. Lancet Oncol. 2014, 15, 924−925.
ACS Paragon Plus Environment