Journal of the American Chemical Society
Communication
Scheme 2. Deuterium Labeling Studies and Postulated
Mechanism
REFERENCES
■
(
1) General overviews: (a) Bull, J. A.; Mousseau, J. J.; Guillaume, P.;
Charrette, A. B. Chem. Rev. 2012, 112, 2642. (b) Eicher, T.; Hauptmann,
S.; Speicher, A. The Chemistry of Heterocycles: Structures, Reactions,
Synthesis, and Applications, 3rd ed.; Wiley-VCH: Weinheim, Germany,
2
(
012.
2) Recent reviews: (a) Patureau, F. W.; Glorius, F. Angew. Chem., Int.
Ed. 2011, 50, 1977. (b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K.
Angew. Chem., Int. Ed. 2012, 51, 8960. (c) Colby, D. A.; Tsai, A. S.;
Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 43, 814.
(3) (a) Umeda, N.; Tsurgi, H.; Satoh, T.; Miura, M. Angew. Chem., Int.
Ed. 2008, 47, 4019. (b) Fukutani, T.; Umeda, M.; Hirano, K.; Satoh, T.;
Miura, M. Chem. Commun. 2009, 5141. (c) Stuart, D. R.; Bertrand-
Laperle, M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130,
1
6474. (d) Colby, D. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc.
2
008, 130, 3645.
(
4) (a) Hyster, T. K.; Rovis, T. J. Am. Chem. Soc. 2010, 132, 10565.
b) Hyster, T. K.; Rovis, T. Chem. Sci. 2011, 2, 1606. (c) Guimond, N.;
Fagnou, K. J. Am. Chem. Soc. 2009, 131, 12050.
5) (a) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem.
Soc. 2011, 133, 2350. (b) Wang, H.; Glorius, F. Angew. Chem., Int. Ed.
012, 51, 7318. (c) Wang, H.; Grohmann, C.; Nimphius, C.; Glorius, F.
(
(
2
J. Am. Chem. Soc. 2012, 134, 19592. (d) Guimond, N.; Gouliaras, C.;
Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908. (e) Guimond, N.;
Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449. (f) Ye, B.;
Cramer, N. J. Am. Chem. Soc. 2013, 135, 636. (g) Xu, X.; Liu, Y.; Park, C.
M. Angew. Chem., Int. Ed. 2012, 51, 9372.
(6) Song, G.; Gong, X.; Li, X. J. Org. Chem. 2011, 76, 7583.
(7) Fang, Y.-Q.; Bio, M. M.; Hansen, K. B.; Potter, M. S.; Clausen, A. J.
Am. Chem. Soc. 2010, 132, 15525.
8) (a) Johnson, D. S.; Chung, C.; Fay, L. K.; Favor, D. A.; Repine, J. T.;
(
insertions at the 4- and 6-position are slower. To the extent they
occur under the reaction conditions, they appear to lead to
intermediates that are either slower in the insertion step (4-
position) or unproductive (6-position).
White, A. D.; Akunne, H. C.; Fitzgerald, L.; Nicholls, K.; Snyder, B. J.;
Whetzel, S. Z.; Zhang, L.; Serpa, K. A. Bioorg. Med. Chem. Lett. 2011, 21,
2
621. (b) Siu, T.; Kozina, E. S.; Jung, J.; Altman, M. D.; Rush, T.;
Dinsmore, C. J.; Young, J. R.; Rosenstein, C.; Chan, G.; Mathur, A.;
Bachman, E.; Mo, J.-R.; Xu, L.; Bouthillette, M.; Marshall, C. G. Bioorg.
Med. Chem. Lett. 2010, 20, 7421. (c) Li, Y.; Rossi, M. A.; Liang, J.; Siu, T.;
Hu, E.; Cosford, N.; Prasit, P.; Barnett, S. F.; Defeo-Jones, D.; Jones, R.
E.; Robinson, R. G.; Leander, K.; Huber, H. E.; Mittal, S. Bioorg. Med.
Chem. Lett. 2009, 19, 834.
(9) Pd-catalyzed C−H activations of pyridine N-oxides: (a) Cho, S. H.;
Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254. (b) Campeau,
L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 1820.
In conclusion, a Rh(III)-catalyzed C−H activation of
nicotinamide N-oxides in the presence of alkenes or alkynes to
afford naphthyridinone N-oxide or dihydronaphthyridinone N-
oxide products has been realized. The reaction proceeds with
nearly perfect regioselectivity on the pyridine and high
16
regioselectivity for the olefin insertion. Furthermore, the
reaction proceeds under mild conditions with relatively low
catalyst loadings (1 mol% for alkyne, 2.5 mol% for alkenes).
Additional mechanistic and computational studies to fully
rationalize the observed products are planned and will be
reported in due course.
(
8
c) Kanyiva, K. S.; Nako, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2007, 46,
872.
10) The use of terminal alkynes is known to be problematic in similar
(
systems that employ external oxidants (typically Cu(II)) due to alkyne
dimerization (Glaser coupling).
(
11) This would allow access to the desired naphthyridinone motif
ASSOCIATED CONTENT
Supporting Information
■
upon protonolysis of the silyl group and reduction of the pyridine N-
oxide.
(12) The (CH CN) Cp*Rh(III)SbF catalyst was equally effective at
promoting the transformation as [Cp*Rh(III)Cl ] at the same catalyst
loading.
*
S
3
3
6
2 2
AUTHOR INFORMATION
(13) (a) Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem.
2
009, 74, 7094. (b) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. Org.
Lett. 2010, 12, 5776. (c) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007,
9
, 1407. (d) Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132,
9
982. (e) Patureau, F. W.; Besset, T. Angew. Chem., Int. Ed. 2010, 50,
Present Address
E.A.B.: Suterra, LLC, 20950 Talus Place, Bend, OR 97701
Notes
1064. (f) Tsai, A. S.; Brasse, M.; Bergman, R. G.; Ellman, J. A. Org. Lett.
2011, 13, 540.
†
(14) Aoyagi, Y.; Abe, T.; Ohta, A. Synthesis 1997, 891.
(15) The presence of different reaction pathways in the absence and
The authors declare no competing financial interest.
presence of coupling partner cannot be ruled out and is the subject of
further studies.
ACKNOWLEDGMENTS
■
(16) After completion of this research, a single example of
regioselective functionalization of a nicotinamide was reported in
closely related chemistry: Presset, M.; Oehlreich, D.; Rombouts, F.;
Molander, G. A. Org. Lett. 2013, 15, 1528.
We gratefully acknowledge Dr. Jacqueline E. Milne for useful
discussions and Dr. Chul Yoo for assistance with obtaining
HRMS data.
1
4495
dx.doi.org/10.1021/ja405140f | J. Am. Chem. Soc. 2013, 135, 14492−14495