7560 J. Am. Chem. Soc., Vol. 121, No. 33, 1999
EVans et al.
reactions of chelating dienophiles is presented. These complexes
are characterized by X-ray crystallography, and a kinetics study
has been employed to evaluate the extent of product inhibition.
In addition, double-stereodifferentiating reactions have been
carried out to assess the torsional stability of the catalyst-
dienophile complex (cf. A, eq 3).
Scheme 1
Auxiliary-Based Reactions. Chiral R,â-unsaturated N-acyl-
oxazolidinones such as (R)-2, introduced by us in 1984, have
proven to be effective dienophiles in Lewis acid-promoted
Diels-Alder reactions (Scheme 1).7,8 These dienophiles offer
the advantages of high reactivity (>100-fold that of an
equivalent ester dienophile) and a well-organized dienophile-
Lewis acid complex.7a The stereochemical outcome of diene
cycloadditions with this dienophile is consistent with (a) the
intervention of a bidentate Lewis acid-dienophile complex,
s-cis-/s-trans-3 and (b) subsequent cycloaddition out of the more
stable s-cis conformation from the more accessible dienophile
diastereoface to afford the principal cycloadduct (S,R)-4. Cas-
tellino has investigated the solution structures of the Me2AlCl
and SnCl4 complexes of these imide-derived dienophiles by 1H
NMR spectroscopy and has concluded that two-point binding
is occurring with both of the indicated Lewis acids.9 Further-
more, an analysis of nonbonding interactions in the dienophile-
Lewis acid complex suggests that the s-cis conformer of 3 would
be expected to be more stable.10 In addition to the preceding
evidence, the recently reported X-ray structures of Ti(IV) imide
complexes11 support our original design premise that two-point
chelation between strongly Lewis acidic metal centers and this
family of dienophiles is possible and that the dienophile-Lewis
acid complex adopts the s-cis conformation in the solid state.
It is significant to the subsequent discussion that, if two-point
catalyst-dienophile binding is occurring in these reactions, then
the s-cis dienophile conformation must be inVoked to account
for the stereochemical outcome of the cycloaddition. In fact,
all published Diels-Alder reactions with this family of chiral
dienophiles conform to the stereochemical predictions that
follow from a diastereofacial analysis of the metal-complexed
s-cis-3 conformer.7,8
reactions of cyclopentadiene with unsubstituted dienophile 5
(R ) H).13,14 Other important contributions from Corey’s
laboratory described the use of aluminum-stien complex D for
enantioselective Diels-Alder reactions of imides.15 Narasaka
has reported the effective chiral Ti(IV) catalyst E (R ) Ph)
that exhibits moderate to excellent selectivities with substituted
as well as unsubstituted dienophiles 5 (R ) H, alkyl).16,17 More
recently, Kobayashi found that the chiral BINOL-Yb(III) catalyst
F (X ) OH) effectively catalyzes the reaction of 5 (R ) H,
alkyl) with cyclopentadiene at 0 °C with excellent levels of
stereocontrol.18 An extension of that study using a bis-
(acylamino)binaphthalene ligand and Yb(OTf)3 (F, X ) NH-
COR) has been recently disclosed by Nakagawa.19 Collins has
(13) Fe(III): (a) Corey, E. J.; Imai, N.; Zhang, H.-Y. J. Am. Chem. Soc.
1991, 113, 728-729. Mg(II): (b) Corey, E. J.; Ishihara, K. Tetrahedron
Lett. 1992, 33, 6807-6810.
(14) Other bis(oxazoline)-metal complexes have been evaluated as
catalysts. Mg (II): (a) Desimoni, G.; Faita, G.; Righetti, P. P. Tetrahedron
Lett. 1996, 37, 3027-30. (b) Carbone, P.; Desimoni, G.; Faita, G.; Filippone,
S.; Righetti, P. Tetrahedron 1998, 54, 6099-6110 and references therein.
(c) Takacs, J. M.; Lawson, E. C.; Reno, M. J.; Youngman, M. A.; Quincy,
D. A. Tetrahedron: Asymmetry 1997, 8, 3073-3078. (d) Takacs, J. M.;
Quincy, D. A.; Shay, W.; Jones, B. E.; Ross, C. R. Tetrahedron: Asymmetry
1997, 8, 3079-3087. (e) Honda, Y.; Date, T.; Hiramatsu, H.; Yamauchi,
M. Chem. Commun. 1997, 1411-1412. Zn(II): (f) Evans, D. A.; Kozlowski,
M. C.; Tedrow, J. S. Tetrahedron Lett. 1996, 37, 7481-7484. For other
Mg(II) complexes employed in Diels-Alder reactions, see: (g) Fujisawa,
T.; Ichiyanagi, T.; Shimizu, M. Tetrahedron Lett. 1995, 36, 5031-5034.
(h) Ichiyanagi, T.; Shimizu, M.; Fujisawa, T. J. Org. Chem. 1997, 62, 7937-
7941. (i) Ordon˜ez, M.; Guerrero de la Rosa, V.; Labastida, V.; Llera, J. M.
Tetrahedron: Asymmetry 1996, 7, 2675-2686.
It is on the basis of these investigations that the use of
unsaturated oxazolidinone-derived dienophiles has been subse-
quently explored by ourselves and others in Diels-Alder
reactions with chiral Lewis acid catalysts (vide infra).
Chiral Lewis Acid-Catalyzed Reactions. Complexes derived
from a range of metals [Fe(III), Mg(II), Ti(IV), Yb(III), Zr-
(IV), Al(III), Ni(II), Cu(II)] and chiral ligands have now been
reported for the Diels-Alder reactions of imide 5 (Figure 1).12
Corey and co-workers have reported catalysts derived from bis-
(oxazoline) complexes of Fe(III) and Mg(II) (B and C) in
(15) (a) Corey, E. J.; Sarshar, S.; Bordner, J. J. Am. Chem. Soc. 1992,
114, 7938-7939. (b) Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xiang, Y.
B. J. Am. Chem. Soc. 1989, 111, 5493-5495. (c) Corey, E. J.; Imai, N.;
Pikul, S. Tetrahedron Lett. 1991, 32, 7517-7520. For applications of this
complex to cycloadditions of maleimides, see: (d) Corey, E. J.; Sarshar,
S.; Lee, D. H. J. Am. Chem. Soc. 1994, 116, 12089-12090. (e) Corey, E.
J.; Letavic, M. A. J. Am. Chem. Soc. 1995, 117, 9616-9617.
(16) (a) Narasaka, K.; Tanaka, H.; Kanai, F. Bull. Chem. Soc. Jpn. 1991,
64, 387-391. (b) Narasaka, K.; Iwasawa, N.; Inoue, M.; Yamada, T.;
Nakashima, M.; Sugimori, J. J. Am. Chem. Soc. 1989, 111, 5340-5345
and references therein. (c) Narasaka, K.; Yamamoto, I. Tetrahedron 1992,
48, 5743-5754. (d) Yamamoto, I.; Narasaka, K. Bull. Chem. Soc. Jpn. 1994,
67, 3327-3333. (e) Yamamoto, I.; Narasaka, K. Chem. Lett. 1995, 1129-
1130. (f) Iwasawa, N.; Sugimori, J.; Kawase, Y.; Narasaka, K. Chem. Lett.
1989, 1947-1950. (g) Narasaka, K.; Saitou, M.; Iwasawa, N. Tetrahe-
dron: Asymmetry 1991, 2, 1305-1318. (h) Corey, E. J.; Matsumura, Y.
Tetrahedron Lett. 1991, 32, 6289-6292.
(17) Seebach and others have provided additional contributions to this
family of chiral titanium complexes: (a) Seebach, D.; Dahinden, R.; Marti,
R. E.; Beck, A. K.; Plattner, D. A.; Kuehnle, F. N. M. J. Org. Chem. 1995,
60, 1788-1799. (b) Haase, C.; Sarko, C. R.; DiMare, M. J. Org. Chem.
1995, 60, 1777-1787. (c) Chapuis, C.; Bauer, T.; Jezewski, A.; Jurczak, J.
Pol. J. Chem. 1994, 68, 2323-31. (d) Gothelf, K. V.; Jørgensen, K. A. J.
Org. Chem. 1995, 60, 6847-6851. (e) Reference 11a.
(7) (a) Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1988,
110, 1238-1256. (b) Evans, D. A.; Chapman, K. T.; Hung, D. T.;
Kawaguchi, A. T. Angew. Chem., Int. Ed. Eng. 1987, 26, 1184-1187. (c)
Evans, D. A.; Chapman, K. T.; Bisaha, J. Tetrahedron Lett. 1984, 25, 4071-
4074. (d) Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc.
1984, 106, 4261-4263.
(8) For applications of these dienophiles in natural products synthesis,
see: (a) Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497-
4513. (b) Morimoto, Y.; Iwahashi, M.; Nishida, K.; Hayashi, Y.; Shirahama,
H. Angew. Chem., Int. Ed. Engl. 1996, 35, 904-906.
(9) (a) Castellino, S.; Dwight, W. J. J. Am. Chem. Soc. 1993, 115, 2986-
2987. (b) Castellino, S. J. Org. Chem. 1990, 55, 5197-5200.
(10) N,N-Dialkyl acrylamides have a strong propensity for the s-cis
conformation: Montaudo, G.; Librando, V.; Caccamese, S.; Maravigna, P.
J. Am. Chem. Soc. 1973, 95, 6365-6370.
(11) (a) Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. J. Am. Chem.
Soc. 1995, 117, 4435-4436. (b) Cozzi, P. G.; Solari, E.; Floriani, C.; Chiesi-
Villa, A.; Rizzoli, C. Chem. Ber. 1996, 129, 1361-1368.
(12) For the catalysts illustrated in Figure 1, the absolute configurations
of the ligand have been matched to the absolute configuration of the Diels-
Alder adduct (eq 5).