Journal of the American Chemical Society
Article
(3) (a) Lehn, J.-M. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4763−
4768. (b) Lehn, J.-M. Chem. Soc. Rev. 2007, 36, 151−160. (c) Lehn, J.-
M. Top. Curr. Chem. 2011, 322, 1−32. (d) Lehn, J.-M. Angew. Chem.,
Int. Ed. 2013, 52, 2836−2850.
erasing process based on the generation of constitutional
dynamic engrams7 and operating via CDNs.
It is worth stressing that, whereas usually DCC searches for
fast component exchange and constituent equilibration in a
DCL, here a slow process is required to retain the trained,
informed out-of-equilibrium state, highlighting the virtues of
slowness (which may also apply to other cases)!
One may surmise that a more complex DCL based on more
components of various structural types would generate a great
variety of interconvertible constituents, which, when subjected
to given effectors, would produce different distribution patterns
within the higher order dynamic network underlying the DCL,
thus yielding a constitutional fingerprint/engram, a specific
distribution of constituents for each effector. Such multi-
component and multiresponsive constitutional dynamic net-
works provide avenues toward chemical systems6 of increasing
complexity.17
(4) For a selection of reviews specifically on dynamic covalent
chemistry, see, for instance: (a) Lehn, J.-M. Chem. - Eur. J. 1999, 5,
2455−2463. (b) Rowan, S. J.; Cantrill, S. J.; Cousins, G. R.; Sanders, J.
K. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2002, 41, 898−952.
(c) Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J.-L.;
Sanders, J. K. M.; Otto, S. Chem. Rev. 2006, 106, 3652−3711.
(d) Ladame, S. Org. Biomol. Chem. 2008, 6, 219−226. (e) Miller, B. L.
Dynamic Combinatorial Chemistry; Wiley: Chichester, 2010. (f) Reek, J.
N. H.; Otto, S. Dynamic Combinatorial Chemistry; Wiley-VCH:
Weinheim, 2010. (g) Hunt, R. A. R.; Otto, S. Chem. Commun. 2011,
47, 847−855. (h) Belowich, M. E.; Stoddart, J. F. Chem. Soc. Rev. 2012,
41, 2003−2024.
(5) (a) Chaur, M. N.; Collado, D.; Lehn, J.-M. Chem. - Eur. J. 2011,
17, 248−258. (b) Vantomme, G.; Jiang, S.; Lehn, J.-M. J. Am. Chem.
Soc. 2014, 136, 9509−9518 and references therein.
(6) For systems chemistry, see, for instance: (a) von Kiedrowski, G.
Angew. Chem., Int. Ed. 2005, 44, 6750−6755. (b) Stankiewicz, J.;
Eckardt, L. H. Angew. Chem., Int. Ed. 2006, 45, 342−344.
(c) Kindermann, M.; Stahl, I.; Reimold, M.; Pankau, W. M.; von
Kiedrowski, G. Angew. Chem., Int. Ed. 2005, 44, 6750. (d) Corbett, P.
T. Angew. Chem., Int. Ed. 2007, 46, 8858−8861. (e) Ludlow, R. F.;
Otto, S. Chem. Soc. Rev. 2008, 37, 101−108. (f) del Amo, V.; Philp, D.
Chem. - Eur. J. 2010, 16, 13304−13318. (g) Ghosh, S.; Mukhopadhyay,
P.; Isaacs, L. J. Syst. Chem. 2010, 1:6, 1−13. (h) Hunt, R. A. R.; Otto,
S. Chem. Commun. 2011, 47, 847−858. (i) Grzybowski, B.; Otto, S.;
Philp, D. Chem. Commun. 2014, 50, 14924−14925. (j) Mattia, E.;
Otto, S. Nat. Nanotechnol. 2015, 10, 111−119. (k) For
implementation of an artificial neural network to chirality determi-
nation, see: Granda, J. M.; Jurczak, J. Chem. - Eur. J. 2014, 20, 12368−
12372. (l) For biological networks, see, for instance: Barkai, N.;
Leibler, S. Nature 1997, 387, 913−917.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental details, NMR spectra, and synthetic
AUTHOR INFORMATION
Corresponding Author
■
Present Address
†Institute for Complex Molecular Systems and Laboratory of
Macromolecular and Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands.
(7) Lehn, J.-M. Angew. Chem., Int. Ed. 2015, 54, 3276−3289.
(8) For imprinting in a distribution of dynamic polymers, see: Fujii,
S.; Lehn, J.-M. Angew. Chem., Int. Ed. 2009, 48, 7635−7638.
(9) For examples of molecular imprinting onto polymers, see, for
Notes
The authors declare no competing financial interest.
instance: (a) Mosbach, K.; Ramstrom, O. Bio/Technology 1996, 14,
̈
163−170. (b) Haupt, K.; Mosbach, K. Chem. Rev. 2000, 100, 2495−
ACKNOWLEDGMENTS
We thank the ERC Advanced grant “SUPRADAPT” for
financial support. J.H. and G.V. thank the Universite
Strasbourg for a doctoral fellowship.
■
2504. (c) Liu, J.-Q.; Wulff, G. J. Am. Chem. Soc. 2004, 126, 7452−
7453. (d) Yan, M., Ramstrom, O., Eds. Molecular Imprinted Materials:
̈
́
de
Science and Technology; Dekker: New York, 2005. (e) Andersson, A.
C.; Andersson, H. S.; Ansell, L. I.; Kirsch, R. J.; Nicholls, N.;
O’Mahony, I. A.; Whitcombe, M. J. J. Mol. Recognit. 2006, 19, 106−
180. (f) Haupt, K. Molecular Imprinting, Top. Curr. Chem., 2012.
(g) Whitcombe, M. J.; Kirsch, N.; Nicholls, I. A. J. Mol. Recognit. 2014,
27, 297−401.
REFERENCES
(1) Lehn, J.-M. Chem. - Eur. J. 2000, 6, 2097−2102.
■
(2) For some reviews on the designed formation of specifically
metallosupramolecular entities, see, for instance: (a) Piguet, C.;
Bernardinelli, G.; Hopfgartner, G. Chem. Rev. 1997, 97, 2005−2062.
(b) Fujita, M. Chem. Soc. Rev. 1998, 27, 417−425. (c) Caulder, D. L.;
Raymond, K. N. Acc. Chem. Res. 1999, 32, 975−982. (d) Saalfrank, R.
W.; Demleitner, B. Transition Metals in Supramolecular Chemistry;
Wiley: New York, 1999; pp 1−51. (e) Leininger, S.; Olenyuk, B.;
Stang, P. J. Chem. Rev. 2000, 100, 853−908. (f) Albrecht, M. J.
Inclusion Phenom. Mol. Recognit. Chem. 2000, 36, 127−151.
(g) Albrecht, M. Chem. Rev. 2001, 101, 3457−3497. (h) Seidal, S.
R.; Stang, P. J. Acc. Chem. Res. 2002, 35, 972−983. (i) Ruben, M.;
Rojo, J.; Romero-Salguero, F. J.; Uppadine, L. H.; Lehn, J.-M. Angew.
Chem., Int. Ed. 2004, 43, 3644−3662. (j) Fujita, M.; Tominaga, M.;
Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 369−378. (k) Steel, P.
J. Acc. Chem. Res. 2005, 38, 243−250. (l) Saalfrank, R. W.; Maid, H.;
Scheurer, A. Angew. Chem., Int. Ed. 2008, 47, 8794−8824.
(m) Smulders, M. M.; Riddell, I. A.; Browne, C.; Nitschke, J. R.
Chem. Soc. Rev. 2013, 42, 1728−1754. (n) For two examples, see:
Funeriu, D. P.; Lehn, J.-M.; Fromm, K. M.; Fenske, D. Chem. - Eur. J.
2000, 6, 2103−2111. (p) Funeriu, D. P.; Rissanen, K.; Lehn, J.-M.
Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 10546−10551.
(10) For the generation of an out-of-equilibrium structural state, see,
for instance: Ratjen, L.; Vantomme, G.; Lehn, J.-M. Chem. - Eur. J.
2015, 27, 10070−10081.
(11) For related examples of conformational dynamics, see, for
instance: (a) Choudhury, A.; Geetha, B.; Sangeetha, N. R.; Kavita, V.;
Susila, V.; Pal, S. J. Coord. Chem. 1999, 48, 87−95. (b) Choudhary, S.;
Morrow, J. R. Angew. Chem., Int. Ed. 2002, 41, 4096−4098.
(c) Bernhardt, P. V.; Chin, P.; Sharpe, P. C.; Richardson, D. R.
Dalton Trans. 2007, 30, 3232−3244. (d) Chow, C. F.; Fujii, S.; Lehn,
J.-M. Angew. Chem., Int. Ed. 2007, 46, 5007−5010. (e) Cao, X. Y.;
Harrowfield, J.; Nitschke, J.; Ramirez, J.; Stadler, A. M.; Kyritsakas-
Gruber, N.; Madalan, A.; Rissanen, K.; Russo, L.; Vaughan, G.; Lehn,
J.-M. Eur. J. Inorg. Chem. 2007, 18, 2944−2965.
(12) For adaptation to shape switching, see: (a) Ulrich, S.; Lehn, J.-
M. J. Am. Chem. Soc. 2009, 131, 5546−5559. (b) Ulrich, S.; Buhler, E.;
Lehn, J.-M. New J. Chem. 2009, 33, 271−292. (c) Ulrich, S.; Lehn, J.-
M. Chem. - Eur. J. 2009, 15, 5640−5645.
(13) For examples of configurational dynamics, see, for instance:
(a) Palla, G.; Mangia, A.; Predieri, G. Annali Chim. 1984, 74, 153−158.
(b) Belov, D. G.; Rogachev, B. G.; Tkachenko, L. I.; Smirnov, V. A.;
H
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX