10.1002/anie.201903174
Angewandte Chemie International Edition
COMMUNICATION
9175–9206; for a recent beautiful example, see: e) K. Yabushita, A.
Yuasa, K. Nagao, H. Ohmiya, J. Am. Chem. Soc. 2019, 141, 113–117.
a) N. Arai, K. Suzuki, S. Sugizaki, H. Sorimachi, T. Ohkuma, Angew.
Chem. Int. Ed. 2008, 47, 1770–1773; Angew. Chem. 2008, 120, 1794–
1797; b) J. Matsuo, Y. Hattori, H. Ishibashi, Org. Lett. 2010, 12, 2294–
2297.
hydro-
Appel
Me
Me2PhSi OH
tBuMe2Si OH
genation
reaction
Me
Me
[3]
[4]
[a]
[c]
I
OH
Si OH
5: 81% from 4ca
7: 85% from 4aa
Me
d.r. > 99:1, 97% ee
d.r. = 89:11, 92% ee
V. Cirriez, C. Rasson, T. Hermant, J. Petrignet, J. D. Alvarez, K.
Robeyns, O. Riant, Angew. Chem. Int. Ed. 2013, 52, 1785–1788;
Angew. Chem. 2013, 125, 1829–1832.
OH
4aa, 4ca,
and 4da
OH
[b]
[d]
Me2PhSiO
Me
Ph
Me
cyclopropane
Brook
[5]
[6]
L. Panella, B. L. Feringa, J. G. de Vries, A. J. Minnaard, Org. Lett. 2005,
7, 4177–4180.
OH
6: 85% from 4ca
d.r. = 78:22, 96% ee
formation
rearrangement
8: 71% from 4aa
(two steps)
ring-closing
For authoritative reviews of acylsilane chemistry, see: a) H.-J. Zhang, D.
L. Priebbenow, C. Bolm, Chem. Soc. Rev. 2013, 42, 8540–8571; b) M.
Nahm Garrett, J. S. Johnson in Science of Synthesis Knowledge
Updates 2012/2 (Ed.: M. Oestreich), Thieme, Stuttgart, 2012, pp. 1–84;
see also: c) G. R. Boyce, S. N. Greszler, J. S. Johnson, X. Linghu, J. T.
Malinowski, D. A. Nicewicz, A. D. Satterfield, D. C. Schmitt, K. M.
Steward, J. Org. Chem. 2012, 77, 4503–4515.
d.r. = 86:14
[e]
metathesis
(two steps)
Me2Si
Ph
HO
Me
OTBS
9: 86% from 4da
[7]
For selected examples of 1,2-addition reactions to acylsilanes, see: a)
R. B. Lettan II, C. C. Woodward, K. A. Scheidt, Angew. Chem. Int. Ed.
2008, 47, 2294–2297; Angew. Chem. 2008, 120, 2326–2329; b) R. B.
Lettan II, C. V. Galliford, C. C. Woodward, K. A. Scheidt, J. Am. Chem.
Soc. 2009, 131, 8805–8814; c) D. A. Nicewicz, J. S. Johnson, J. Am.
Chem. Soc. 2005, 127, 6170–6171; d) G. R. Boyce, S. Liu, J. S.
Johnson, Org. Lett. 2012, 14, 652–655; e) F.-G. Zhang, I. Marek, J. Am.
Chem. Soc. 2017, 139, 8364–8370; for organocatalytic aldol reactions
of silyl glyoxylates, see: f) M.-Y. Han, X. Xie, D. Zhou, P. H. Li, L. Wang,
Org. Lett. 2017, 19, 2282–2285; g) M.-Y. Han, W.-Y. Luan, P.-L. Mai, P.
H. Li, L. Wang, J. Org. Chem. 2018, 83, 1518-1524.
d.r. = 92:8
Scheme 4. Tertiary α-silyl alcohols as versatile building blocks. [a] Pd/C (10%),
H2 (1 atm), MeOH, RT, 26 h. [b] TBAF (1.1 equiv), THF, 0 °C, 3 h. [c] I2 (2
equiv), Ph3P (2 equiv), 1H-imidazole (2 equiv), Et2O/CH3CN (4/1), RT, 1 h. [d]
1) TsCl (2.4 equiv), pyridine, 0 °C to RT, 24 h; 2) nBuLi (1.1 equiv), –78 °C to
RT, 4 h. [e] 1) TBSCl (2.4 equiv), DMAP (2.4 equiv), CH2Cl2, 0 °C to RT, 24 h;
2) Grubbs II (5 mol%), CH2Cl2, Δ, 16 h. TBAF = tetrabutylammonium fluoride,
Ts = p-toluenesulfonyl, DMAP = 4-(dimethylamino)pyridine.
[8]
[9]
a) R. Unger, F. Weisser, N. Chinkov, A. Stanger, T. Cohen, I. Marek,
Org. Lett. 2009, 11, 1853–1856; b) P. Smirnov, J. Mathew, A. Nijs, E.
Katan, M. Karni, C. Bolm, Y. Apeloig, I. Marek, Angew. Chem. Int. Ed.
2013, 52, 13717–13721; Angew. Chem. 2013, 125, 13962–13966; c) P.
Smirnov, E. Katan, J. Mathew, A. Kostenko, M. Karni, A. Nijs, C. Bolm,
Y. Apeloig, I. Marek, J. Org. Chem. 2014, 79, 12122–12135.
F.-Q. Li, S. Zhong, G. Lu, A. S. C. Chan, Adv. Synth. Catal. 2009, 351,
1955–1960.
In summary, we have introduced here a new approach to the
asymmetric synthesis of densely functionalized tertiary α-silyl
alcohols. This has been achieved by diastereoselective addition
of chiral allylic copper intermediate to acylsilanes, the former
generated by copper-catalyzed regio- and enantioselective
addition of an in-situ-formed boron nucleophile across 1,3-
dienes. The net reaction is a three-component coupling of 1,3-
dienes, a diboron reagent, and acylsilanes. The substrate scope
is broad, thereby enabling the flexible synthesis of chiral silicon
building blocks. The enantiomerically enriched α-silyl alcohols
may serve as precursors for other useful motifs that would
otherwise be more cumbersome to prepare.
[10] J. W. Rong, R. Oost, A. Desmarchelier, A. J. Minnaard, S. R.
Harutyunyan, Angew. Chem. Int. Ed. 2015, 54, 3038–3042; Angew.
Chem. 2015, 127, 3081–3085.
[11] a) H. Ito, H. Yamanaka, J. Tateiwa, A. Hosomi, Tetrahedron Lett. 2000,
41, 6821–6825; b) K. Takahashi, T. Ishiyama, N. Miyaura, Chem. Lett.
2000, 982–983.
[12] For selected reviews, see: a) K. Semba, T. Fujihara, J. Terao, Y. Tsuji,
Tetrahedron 2015, 71, 2183–2197; b) H. Yoshida, ACS Catal. 2016, 6,
1799–1811; c) Y. Tsuji, T. Fujihara, Chem. Rec. 2016, 16, 2294–2313;
d) A. P. Pulis, K. Yeung, D. J. Procter, Chem. Sci. 2017, 8, 5240–5247;
e) D. Hemming, R. Fritzemeier, S. A. Westcott, W. L. Santos, P. G.
Steel, Chem. Soc. Rev. 2018, 47, 7477–7494; f) K. Semba, Y. Nakao,
Tetrahedron 2019, 75, 709–719.
Acknowledgements
J.-J. F. gratefully acknowledges the Alexander von Humboldt
Foundation for a postdoctoral fellowship (2017–2019). M.O. is
indebted to the Einstein Foundation Berlin for an endowed
professorship. We are grateful to Dr. Elisabeth Irran (TU Berlin)
for the X-ray crystal-structure analysis and Professor Junliang
Zhang (Fudan University) for a generous gift of chiral phosphine
ligands.
[13] Aldehydes and ketones: a) F. Meng, F. Haeffner, A. H. Hoveyda, J. Am.
Chem. Soc. 2014, 136, 11304–11307; b) F. Meng, H. Jang, B. Jung, A.
H. Hoveyda, Angew. Chem. Int. Ed. 2013, 52, 5046–5051; Angew.
Chem. 2013, 125, 5150–5155; c) X.-C. Gan, L. Yin, Org. Lett. 2019, 21,
931–936; d) A. R. Burns, J. S. González, H. W. Lam, Angew. Chem. Int.
Ed. 2012, 51, 10827–10831; Angew. Chem. 2012, 124, 10985–10989.
[14] Imines: a) L. Jiang, P. Cao, M. Wang, B. Chen, B. Wang, J. Liao,
Angew. Chem. Int. Ed. 2016, 55, 13854–13858; Angew. Chem. 2016,
128, 14058–14062; b) K. Yeung, R. E. Ruscoe, J. Rae, A. P. Pulis, D. J.
Procter, Angew. Chem. Int. Ed. 2016, 55, 11912–11916; Angew. Chem.
2016, 128, 12091–12095; c) J. Rae, K. Yeung, J. J. W. McDouall, D. J.
Procter, Angew. Chem. Int. Ed. 2016, 55, 1102–1107; Angew. Chem.
2016, 128, 1114–1119; d) H. Jang, F. Romiti, S. Torker, A. H. Hoveyda,
Nat. Chem. 2017, 10, 1269–1275; e) T. Itoh, Y. Kanzaki, Y. Shimizu, M.
Kanai, Angew. Chem. Int. Ed. 2018, 57, 8265–8269; Angew. Chem.
2018, 130, 8397–8401; f) K. Yeung, F. J. T. Talbot, G. P. Howell, A. P.
Pulis, D. J. Procter, ACS Catal. 2019, 9, 1655–1661.
Keywords: asymmetric catalysis • boron • copper •
multicomponent reactions • silicon
[1]
a) K. Miura, A. Hosomi in Main Group Metals in Organic Synthesis
(Eds.: H. Yamamoto, K. Oshima), Wiley-VCH, Weinheim, 2005, pp.
409–592; see also: b) G. K. Min, D. Hernandez, T. Skrydstrup, Acc.
Chem. Res. 2013, 46, 457–470; c) A. K. Franz, S. O. Wilson, J. Med.
Chem. 2013, 56, 388–405.
[2]
For authoritative reviews, see: a) N. Lee, C.-H. Tan, D. Leow, Asian J.
Org. Chem. 2019, 8, 25–31; b) W. H. Moser, Tetrahedron 2001, 57,
2065–2084; c) A. G. Brook, Acc. Chem. Res. 1974, 7, 77–84; also of
relevance: d) G. Eppe, D. Didier, I. Marek, Chem. Rev. 2015, 115,
[15] α,β-Unsaturated acceptors: a) P. Liu, Y. Fukui, P. Tian, Z.-T. He, C.-Y.
Sun, N.-Y. Wu, G.-Q. Lin, J. Am. Chem. Soc. 2013, 135, 11700–11703;
b) X. Li, F. Meng, S. Torker, Y. Shi, A. H. Hoveyda, Angew. Chem. Int.
Ed. 2016, 55, 9997–10002; Angew. Chem. 2016, 128, 10151–10156; c)
This article is protected by copyright. All rights reserved.