10.1002/ejoc.201901439
European Journal of Organic Chemistry
FULL PAPER
was treated with a 33% solution of hydrogen bromide in acetic acid (3 mL).
The reaction mixture was stirred at room temperature for 6.0 h, and the
volatiles were evaporated under reduced pressure. The crude product was
dissolved in ethanol (2 mL), and the resulting solution was treated with
propylene oxide (3 mL) and stirred at room temperature for 12.0 h. The
precipitate formed was filtered, washed successively with CH2Cl2 and
AcOEt and dried under reduced pressure to give 36 mg (>98%) of
(1R,8aS)-3 in >98:2 d.r. as a white solid; m.p. = 245-248 °C. [α]20 = -21.1
(c 1.0, H2O). 1H NMR (D2O): δ = 1.77-1.96 (m, 1H, CH2), 2.03-2.36 (m, 3H,
CH2CH2), 3.46-3.52 (m, 1H, CH2N), 3.58-3.62 (m, 1H, CH2N), 3.89 (d, J =
17.5, 1H, CH2CO), 3.94 (d, J = 17.5, 1H, CH2CO), 4.04 (dd, J = 14.0, 3.7,
1H, CHP), 4.12 (ddd, J = 26.9, 10.3, 4.8, 1H, CHN). 13C NMR (D2O): δ =
21.7 (CH2), 28.6 (CH2), 42.2 (CH2N), 46.0 (CH2CO), 50.8 (d, J = 139.2,
CHP), 55.9 (CHN), 162.7 (C=O). 31P NMR (D2O): δ = 5.6. HRMS (ESI):
calcd. for C7H14N2O4P [M+H]+, m/z 221.0691; found for [M+H]+, m/z
221.0686.
Keywords: Chiral carbenium ions • cyclic α-aminophosphonic
acids • cyclic α-aminophosphinic acids • 2,5-diketopiperazines
[1]
a) A. Mucha, P. Kafarski, L. Berlicki, J. Med. Chem. 2011, 54, 5955–
5980; b) F. Orsini, G. Sello, M. Sisti, Curr. Med. Chem. 2010, 17, 264–289;
c) E. D. Naydenova, P. T. Todorov, K. D. Troev, Amino Acids 2010, 38,
23–30; d) B. Lejczak, P. Kafarski, Top. Heterocycl. Chem. 2009, 20, 31–
63; e) A. Yiotakis, D. Georgiadis, M. Matziari, A. Makaritis, V. Dive, Curr.
Org. Chem. 2004, 8, 1135–1158.
[2]
[3]
K. Gluza, P. Kafarski in Drug Discovery (Ed.: H. El-Shemy), InTech,
Rijeka, Croatia, 2013, pp. 325–372.
a) T. Yamagishi, A. Kinbara, N. Okubo, S. Sato, H. Fukaya, Tetrahedron:
Asymmetry 2012, 23, 1633–1639; b) A. Mores, M. Matziari, F. Beau, P.
Cuniasse, A. Yiotakis, V. Dive, J. Med. Chem. 2008, 51, 2216–2226; c)
M. Nasopoulou, D. Georgiadis, M. Matziari, V. Dive, A. Yiotakis, J. Org.
Chem. 2007, 72, 7222–7228; d) B. Boduszek, J. Oleksyszyn, C.-M. Kam,
J. Selzler, R. E. Smith, J. C. Powers, J. Med. Chem. 1994, 37, 3969–
3976.
[4]
[5]
a) A. S. Gazizov, A. V. Smolobochkin, R. A. Turmanov, M. A. Pudovik,
A. R. Burilov, O. G. Sinyashin, Synthesis 2019, 51, 3397–3409; b) M.
Ordóñez, J. L. Viveros-Ceballos, F. J. Sayago, C. Cativiela, Synthesis
2017, 49, 987–997; c) J. L. Viveros-Ceballos, M. Ordóñez, F. J. Sayago,
C. Cativiela, Molecules 2016, 21, 1141.
a) R. O. Argüello-Velasco, G. K. Sánchez-Muñoz, J. L. Viveros-Ceballos,
M. Ordóñez, P. Kafarski, J. Heterocycl. Chem. 2019, 56, 2068−2073; b)
J. L. Viveros-Ceballos, E. I. Martínez-Toto, C. Eustaquio-Armenta, C.
Cativiela, M. Ordóñez, Eur. J. Org. Chem. 2017, 6781−6787; c) M.
Ordóñez, A. Arizpe, F. J. Sayago, A. I. Jiménez, C. Cativiela, Molecules
2016, 21, 1140; d) I. Bonilla-Landa, J. L. Viveros-Ceballos, M. Ordóñez,
Tetrahedron: Asymmetry 2014, 25, 485−487.
4.3.
((1R,8aS)-4-Oxooctahydropyrrolo[1,2-a]pyrazin-1-yl)(phenyl)
phosphinic acid 4. To a stirred solution of the α-aminophosphinates
(1R,8aS,RP)-17 and (1R,8aS,SP)-18 (0.10 g, 0.25 mmol) in dry
dichloromethane (7 mL) at room temperature, bromotrimethylsilane (0.4
mL, 3.04 mmol) was added. Stirring was continued for 24.0 h. After
evaporation of solvent, the solid residue was washed with dry methanol (5
x 5 mL). Then, propylene oxide (5 mL) was added to the resulting residue
and the mixture was kept under stirring for 2.0 h. Then the excess of
propylene oxide was removed under reduced pressure, the residue was
redissolved in MeOH (2 mL) and precipitated with the addition of Et2O. The
precipitate formed was filtered, washed successively with Et2O and AcOEt
and dried under reduced pressure to give 65 mg (93%) of (1R,8aS)-4 in
81:19 d.r. as a light brown solid; m.p. = 162-165 °C. [α]20 = -23.6 (c 1.0,
CHCl3). 1H NMR (D2O): δ = 1.71-1.86 (m, 1H, CH2), 1.94-2.13 (m, 2H, CH2),
2.15-2.31 (m, 1H, CH2), 2.94-3.16 (m, 1H, CH2N), 3.34-3.56 (m, 1H, CH2N),
3.87 (d, J = 17.2, 1H, CH2CO), 3.95 (d, J = 17.2, 1H, CH2CO), 4.02-4.16
(m, 1H, CHN), 4.22 (dd, J = 10.5, 4.6, 1H, CHP), 7.48-7.71 (m, 3H, Harom),
7.74-7.97 (m, 2H, Harom). 13C NMR (D2O): δ = 21.8 (CH2), 28.5 (CH2), 30.9*
(CH2), 42.8 (CH2N), 44.9* (d, J = 6.9, CH2N), 45.6* (CH2CO), 46.1
(CH2CO), 53.7 (d, J = 91.7, CHP), 56.2 (CHN), 56.6* (CHN), 57.3* (d, J =
89.3, CHP), 129.1 (d, J = 12.6, Carom), 131.9 (d, J = 10.1, Carom), 132.1* (d,
J = 9.8, Carom), 132.7 (Carom), 132.9* (Carom), 133.4* (Carom), 134.5 (Carom),
162.3 (C=O), 162.5* (C=O). 31P NMR (D2O): δ = 17.9, 18.2*. HRMS (ESI):
calcd. for C13H18N2O3P [M+H]+, m/z 281.1055; found for [M+H]+, m/z
281.1049.
[6]
J. F. González, I. Ortín, E. de la Cuesta, J. C. Menéndez, Chem. Soc.
Rev. 2012, 41, 6902–6915.
[7]
[8]
A. D. Borthwick, Chem. Rev. 2012, 112, 3641−3716.
a) F. Kawagishi, T. Toma, T. Inui, S. Yokoshima, T. Fukuyama, J. Am.
Chem. Soc. 2013, 135, 13684−13687; b) C. Avendaño, E. de la Cuesta,
Curr. Org. Synth. 2009, 6, 143–168.
[9]
Jin, P. Wessing, J. Liebscher, J. Org. Chem. 2001, 66, 3984–3997; c) L.
E. Overman, M. D. Rosen, Angew. Chem. Int. Ed. 2000, 39,4596–4599;
d) C. Alcaraz, A. Herrero, J. L. Marco, E. Fernández-Alvarez, M. Bernabé,
Tetrahedron Lett. 1992, 33, 5605–5608; e) A. Lieberknecht, H. Griesser,
Tetrahedron Lett. 1987, 28, 4275–4278.
[10] B. S. Sekhon, J. Mod. Med. Chem. 2013, 1, 10–36.
[11] S. Hanessian, R. Sharma, Heterocycles 2000, 52, 1231–1239.
[12] T. Shono, Y. Matsumura, K. Tsubata, Tetrahedron Lett. 1981, 22, 3249–
3252.
[13] CCDC 1957927 [for (1R,8aS)-16] contains the supplementary
crystallographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre.
[14] a) M. Butters, C. D. Davies, M. C. Elliott, J. Hill-Cousins, B. M. Kariuki, L.
Ooi, J. L. Wood, S. V. Wordingham, Org. Biomol. Chem. 2009, 7, 5001–
5009; b) P. Van der Veken, A. Soroka, I. Brandt, Y. S. Chen, M. B. Maes,
A. M. Lambeir, X. Chen, A. Haemers, S. Scharpé, K. Augustyns, I. De
Meester, J. Med. Chem. 2007, 50, 5568–5570; c) R. P. Polniaszek, S. E.
Belmont, R. Alvarez, J. Org. Chem. 1990, 55, 215–223.
[15] a) O. Onomura, P. G. Kirira, T. Tanaka, S. Tsukada, Y. Matsumura, Y.
Demizu, Tetrahedron 2008, 64, 7498–7503; b) T. Shono, T. Fujita, Y.
Matsumura, Chem. Lett. 1991, 20, 81–84.
[16] M. Huisman, M. Rahaman, S. Asad, S. Oehm, S. Novin, A. L. Rheingold,
M. M. Hossain, Org. Lett. 2019, 21, 134–137.
Acknowledgments
[17] D. Farran, D. Echalier, J. Martinez, G. J. Dewynter, Pept. Sci. 2009, 15,
474–478.
The authors thank the Consejo Nacional de Ciencia y Tecnología
(CONACYT) for financial support through projects 286614 and
256985. We also thank Victoria Labastida and Jorge Guillermo
Domínguez-Chávez for their valuable technical support in
obtaining MS spectra and X-ray structure. F.T.H. also wish to
thank CONACYT for Graduate Scholarships 626420.
This article is protected by copyright. All rights reserved.