10.1002/ejic.201800003
European Journal of Inorganic Chemistry
FULL PAPER
at the B, B+dB, B-dB, where dB=0.001 T. The dB small perturbation has
the same polar orientation as the external field. If the outer field is null,
then the and φ dependence concerns the orientation of the applied dB
perturbation. The integration contained in the orientation averaging is
[4]
[5]
a) A. Caneschi, D. Gatteschi, C. S. Lalioti, R. Sessoli, G. Venturi, A.
Vindigni, A. Rettori, M. G. Pini, Novak, M. A. Angew. Chem. Int. Ed.
2001, 40, 1760-1763; b) R. Lescouëzec, J. Vaissermann, C. Ruiz-
Pérez, F. Lloret, R. Carrasco, M. Julve, M. Verdaguer, Y. Dromzée, D.
Gatteschi, W. Wernsdorfer, Angew. Chem. Int. Ed. 2003, 42, 1483; c) J.
S. Miller, Adv. Mater. 2002, 14, 1105.
also considered numerically, taking
a summation (corresponding
weighted with the spherical sin() factors) over a grid of 12 points for the
coordinate and 24 points in the φ scan. As a whole, with the repeated
solving of the large Hamiltonian matrix, as required by the numerical
differentiation and integration procedures, the computation is rather
demanding.
C. E. Hulme, M. Watkinson, M. Haynes, R. G. Pritchard, C. A. McAuliffe,
N. Jaiboon, B. Beagley, A. Sousa, J. Chem. Soc., Dalton Trans. 1997,
1805–1814.
[6]
[7]
R. Bagai, G. Christou, Chem. Soc. Rev. 2009, 38, 1011–1026.
H. Miyasaka, A. Saitoh, S. Abe, Coord. Chem. Rev. 2007, 251, 2622–
2664.
Ab initio calculations. Complete Active Space Self Consistent
(CASSCF) calculations were performed with the GAMESS program[45]
using the 6-311G* basis set for the Mn, N, or O atoms, and 6-31G for the
C or H atoms. The molecular models are cut from the experimental
structure of system 2. For the building blocks of A or B type we
[8]
a) R. Clerac, H. Miyasaka, M. Yamashita, C. Coulon, J. Am. Chem. Soc.
2002, 124, 12837; b) H. Miyasaka, R. Clerac, K. Mizushima, K. Sugiura,
M. Yamashita, W. Wernsdorfer, C. Coulon, Inorg. Chem. 2003, 42,
8203; c) H. Miyasaka, T. Madanbashi, K. Sugimoto, Y. Nakazawa, W.
Wernsdorfer, K. Sugiura, M. Yamashita, C. Coulon, R. Clerac, Chem.
Eur. J. 2006, 12, 7028; d) A. Saitoh, H. Miyasaka, M. Yamashita, R.
Clerac, J. Mater. Chem. 2007, 17, 2002; e) H. Miyasaka, A. Saitoh, M.
Yamashita, R. Clerac, Dalton Trans. 2008, 10, 2422.
considered the {Mn2}A
≡
[Mn2(5-MeOSalen)2(CH3COOLi)2]2+
or
B
molecular models, where Li atoms were imposed as prosthetic elements
mimicking the next Mn(III) ions in the chain. In this way, the carboxylate
moiety from a terminating Mn-carboxylate-Li sequence contains a part of
the electrostatic polarization encountered in the chain, having a better
description of corresponding contribution of this group to the axial ligand
field. In order to estimate the exchange coupling over the carboxylate,
[9]
T.-T. Wang, M. Ren, S.-S. Bao, Z.-S. Cai, B. Liu, Z.-H. Zheng, Z.-L.
Xua, L.-M. Zheng, Dalton Trans. 2015, 44, 4271–4279.
[10] W.-X. Zhang, T. Shiga, H. Miyasaka, M. Yamashita, J. Am. Chem. Soc.
2012, 134, 6908-6911.
bridge
an
asymmetric
molecular
unit
{MnAMnB}
≡
[(LiOH)Mn(MeOSalen)(CH3COO)(MeOSalen)Mn(LiOH)]2+ was computed,
with artificial terminating groups, namely Li+, instead of the following MnIII
ion, and HO- instead of phenoxo group from next salen-type ligand that
completes the axial coordination of the studied centre. The active spaces
of the CASSCF(n,m) calculations (n electrons in m orbitals) were
selected in accordance the considered problem. Thus, for estimating
exchange coupling on selected dimer sequences, {Mn2}A, {Mn2}B, and
{MnA,MnB}, we performed CASSCF(8,10) calculations corresponding to
the d4-d4 case. Focusing on local ligand field on a given d4 site, the
[11] A. Gutierrez, M. F. Perpinan, A. E. Sanchez, M. C. Torralba, V.
Gonzalez, Inorg. Chim. Acta 2016, 453, 169–178.
[12] a) Y. Sawada, W. Kosaka, Y. Hayashi, H. Miyasaka, Inorg. Chem.
2012, 51, 4824-4832; b) Q. Wu, Y.-G. Li, Y.-H. Wang, R. Cleìrac, Y. Lu,
E.-B. Wang, Chem. Commun. 2009, 5743.
[13] K. Kubo, T. Shiga, T. Yamamoto, A. Tajima, T. Moriwaki, Y. Ikemoto, M.
Yamashita, E. Sessini, M. L. Mercuri, P. Deplano, Y. Nakazawa, R.
Kato, Inorg. Chem. 2011, 50 (19), 9337–9344.
[14] a) C. Kachi-Terajima, H. Miyasaka, K. Sugiura, R. Clérac, H. Nojiri,
Inorg. Chem. 2006, 45, 4381; b) C. Kachi-Terajima, H. Miyasaka, A.
Saitoh, N. Shirakawa, M. Yamashita, R. Clérac, Inorg. Chem. 2007, 46,
5861; c) H. Hiraga, H. Miyasaka, S. Takaishi, T. Kajiwara, M.
Yamashita, Inorg. Chim. Acta 2008, 361, 3863; d) H. Hiraga, H.
Miyasaka, R. Clérac, M. Fourmigue., M. Yamashita, Inorg. Chem. 2009,
48, 2887; e) H. Miyasaka, T. Nezu, K. Sugimoto, K. Sugiura, M.
Yamashita, R. Clérac, Chem. Eur. J. 2005, 11, 1592; f) H. J. Choi, J. J.
Sokol, J. R. Long, Inorg. Chem. 2004, 43, 1606.
CASSCF(4,5) calculations were performed on {CoMn}A
[(CH3COOLi)CoIII(5-MeOSalen)MnIII(5-MeOSalen)(CH3COOLi)]2+
≡
or
B
idealized models, where a site was replaced with diamagnetic Co(III) and
excluded from the active space. Applying ab initio spin-orbit (SO)
procedures, subsequently to the CASSCF(4,5) calculations, we
accounted for the magnetic anisotropy resulted from the Zero Field
Splitting (ZFS) effects.
[15] M. Ferbinteanu, H. Miyasaka, W. Wernsdorfer, K. Nakata, K. Sugiura,
M. Yamashita, C. Coulon, R. Clerac, J. Am. Chem. Soc. 2005, 127,
3090-3099.
Acknowledgements
[16] H. Miyasaka, R. Clerac, W. Wernsdorfer, L. Lecren, C. Bonhomme, K.-I.
Sugiura, M. Yamashita, Angew. Chem. Int. Ed. 2004, 43, 2801–2805.
[17] S. Wang, M. Ferbinteanu, M. Yamashita, Inorg. Chem. 2007, 46, 610-
612.
The authors acknowledge financial support from ECOSTBIO
COST action 1305 and the Romanian Ministry of Education and
Research through the UEFISCDI research grant PN3-Idei PCE-
108/2017.
[18] M. Clemente-León, E. Coronado, C. J. Gómez-García, M. López-
Jordà, A. Camón, A. Repollés, F. Luis, Chem. Eur. J. 2014, 20, 1669 –
1676.
[19] a) Z. Lu, M. Yuan, F. Pan, S. Gao, D. Zhang, D. Zhu, Inorg. Chem.
2006, 45, 3538–3548; b) H. Miyasaka, R. Clerac, T. Ishii, H. Chang, S.
Kitagawa, M. Yamashita, J. Chem. Soc., Dalton Trans. 2002, 1528–
1534.
Keywords: Manganese complexes • Magnetic anisotropy • Spin
Hamiltonian• Ab Initio calculations• Exchange mechanisms
[1]
[2]
O. Kahn in Molecular Magnetism (Eds.: J. S. Miller, M. Drillon) Wiley-
VCH, NewYork, 1993, Magnetism: Molecules to Materials I-V. Wiley-
VCH Verlag GmbH & Co. KGaA, 2002.
[20] W. Koch, M. C. Holthausen, A Chemist's Guide to Density Functional
Theory, Wiley-VCH: Berlin, 2001.
[21] a) C. Kachi-Terajima, R. Ishii, Y. Tojo, M. Fukuda, Y. Kitagawa, M.
Asaoka, H. Miyasaka, J. Phys. Chem. C 2017, 121 (22), 12454–12468;
b) P. Seth, S. Giri, A. Ghosh, Dalton Trans. 2015, 44(28), 12863-70.
[22] R. J. Deeth, Inorg. Chem. 2008, 47, 6711-6725.
C. Benelli, D. Gatteschi, Chem. Rev. 2002, 102, 2369 and ref. therein;.
O. Kahn, Acc. Chem. Res. 2000, 33, 647; J. P. Sutter, M. L. Kahn, O.
Kahn, Adv. Mater. 1999, 11, 863; M. Sakamoto, K. Manseki, H. Okawa,
Coord. Chem. Rev. 2001, 219–221, 379 and ref. therein.
a) G. Christou, D. Gatteschi, D. N. Hendrickson, R. Sessoli, MRS Bull.
2000, 66-71; b) D. Gateschi, R. Sessoli, Angew. Chem. Int. Ed. 2003,
42, 268-297.
[23] D. Mandal, P. B. Chatterjee, S. Bhattacharya, K.-Y. Choi, R. Clerac, M.
Chaudhury, Inorg. Chem. 2009, 48, 1826-1835.
[3]
[24] G. B. Deacon, R. Philllips, J. Coord. Chem. Rev 1980, 33, 227.
This article is protected by copyright. All rights reserved.