Organic Letters
Letter
the use of an excess of boron reagents or additives. See: (a) Li, C.;
Wang, J.; Barton, L. M.; Yu, S.; Tian, M.; Peters, D. S.; Kumar, M.;
Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.; Yan, M.; Baran, P. S.
Decarboxylative Borylation. Science 2017, 356, eaam7355. (b) Hu, D.;
Wang, L.; Li, P. Decarboxylative Borylation of Aliphatic Esters under
Visible-Light Photoredox Conditions. Org. Lett. 2017, 19, 2770−
(13) (a) Sakamoto, R.; Sakurai, S.; Maruoka, K. Alkylsilyl Peroxides
as Alkylating Agents in the Copper-Catalyzed Selective Mono-N-
Alkylation of Primary Amides and Arylamines. Chem. - Eur. J. 2017,
23, 9030−9033. (b) Sakamoto, R.; Kato, T.; Sakurai, S.; Maruoka, K.
3
Copper-Catalyzed C(sp)−C(sp ) Coupling of Terminal Alkynes with
Alkylsilyl Peroxides via a Radical Mechanism. Org. Lett. 2018, 20,
1400−1403. (c) Sakurai, S.; Kato, T.; Sakamoto, R.; Maruoka, K.
Generation of Alkyl Radicals from Alkylsilyl Peroxides and Their
Applications to C−N or C−O Bond Formations. Tetrahedron 2019,
2
773. (c) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E.
L.; Aggarwal, V. K. Photoinduced Decarboxylative Borylation of
Carboxylic Acids. Science 2017, 357, 283−286. (d) Wang, J.; Shang,
M.; Lundberg, H.; Feu, K. S.; Hecker, S. J.; Qin, T.; Blackmond, D.
G.; Baran, P. S. Cu-Catalyzed Decarboxylative Borylation. ACS Catal.
7
5, 172−179. See also: Sakamoto, R.; Sakurai, S.; Maruoka, K.
Bis(trialkylsilyl) Peroxides as Alkylating Agents in the Copper-
Catalyzed Selective Mono-N-Alkylation of Primary Amides. Chem.
Commun. 2017, 53, 6484−6487.
2018, 8, 9537−9542. See also the recent examples on radical
borylation reactions (e) Chen, K.; Zhang, S.; He, P.; Li, P. Efficient
Metal-free Photochemical Borylation of Aryl Halides under Batch and
Continuous-flow Conditions. Chem. Sci. 2016, 7, 3676−3680. (f) Yan,
G.; Huang, D.; Wu, X. Recent Advances in C−B Bond Formation
through a Free Radical Pathway. Adv. Synth. Catal. 2018, 360, 1040−
(
14) (a) Iwamoto, H.; Akiyama, S.; Hayama, K.; Ito, H. Copper(I)-
Catalyzed Stereo- and Chemoselective Borylative Radical Cyclization
of Alkyl Halides Bearing an Alkene Moiety. Org. Lett. 2017, 19,
2
614−2617. (b) Cui, J.; Wang, H.; Song, J.; Chi, X.; Meng, L.; Liu,
Q.; Zhang, D.; Dong, Y.; Liu, H. Copper(I)-Catalyzed 5-exo-trig
Radical Cyclization/Borylation of Alkyl Halides: Access to Function-
alized Pyrrolidine Derivatives. Org. Biomol. Chem. 2017, 15, 8508−
1
053. (g) Cheng, Y.; Mu
Radical Borylation of Alkyl and Aryl Iodides. Angew. Chem., Int. Ed.
018, 57, 16832−16836. (h) Mfuh, A. M.; Doyle, J. D.; Chhetri, B.;
̈
ck-Lichtenfeld, C.; Studer, A. Metal-Free
2
8
512.
Arman, H. D.; Larionov, O. V. Scalable, Metal- and Additive-Free,
Photoinduced Borylation of Haloarenes and Quaternary Arylammo-
nium Salts. J. Am. Chem. Soc. 2016, 138, 2985−2988. (i) Zhang, L.;
Jiao, L. Pyridine-Catalyzed Radical Borylation of Aryl Halides. J. Am.
Chem. Soc. 2017, 139, 607−610. (j) Wu, J.; He, L.; Noble, A.;
Aggarwal, V. K. Photoinduced Deaminative Borylation of Alkyl-
amines. J. Am. Chem. Soc. 2018, 140, 10700−10704.
(
15) Alternatively, the reaction between the alkyl radical (4) and the
3
2
silanoxide-activated sp −sp diboron species should directly generate
the borylated product (6). See refs 9b and 9c.
(
16) The isolation of several borylated products was problematic
1
due to their instability on silica gel. Thus, we provide both H NMR
spectra and isolated yields.
(17) (a) Sakaguchi, H.; Ohashi, M.; Ogoshi, S. Fluorinated
(
10) (a) Beckwith, A. L. J.; O’Shea, D. M.; Westwood, S. W.
Vinylsilanes from the Copper-Catalyzed Defluorosilylation of
Rearrangement of Suitably Constituted Aryl, Alkyl, or Vinyl Radicals
by Acyl or Cyano Group Migration. J. Am. Chem. Soc. 1988, 110,
Fluoroalkene Feedstocks. Angew. Chem., Int. Ed. 2018, 57, 328−
3
32. (b) Meng, F.-F.; Xie, J.-H.; Xu, Y.-H.; Loh, T.-P. Catalytically
2
565−2575. (b) Salamone, M.; Bietti, M. Reaction Pathways of
Asymmetric Synthesis of 1,3-Bis(silyl)propenes via Copper-Catalyzed
Alkoxyl Radicals. The Role of Solvent Effects on C−C Bond
Fragmentation and Hydrogen Atom Transfer Reactions. Synlett 2014,
Double Proto-Silylations of Polar Enynes. ACS Catal. 2018, 8, 5306−
5
(
312.
2
5, 1803−1816. (c) Murakami, M.; Ishida, N. β-Scission of Alkoxy
Radicals in Synthetic Transformations. Chem. Lett. 2017, 46, 1692−
700.
11) (a) Wang, S.; Guo, L.-N.; Wang, H.; Duan, X.-H. Alkynylation
18) (a) Xue, W.; Qu, Z.-W.; Grimme, S.; Oestreich, M. Copper-
Catalyzed Cross-Coupling of Silicon Pronucleophiles with Unac-
tivated Alkyl Electrophiles Coupled with Radical Cyclization. J. Am.
Chem. Soc. 2016, 138, 14222−14225. (b) Xue, W.; Oestreich, M.
Copper-Catalyzed Decarboxylative Radical Silylation of Redox-Active
Aliphatic Carboxylic Acid Derivatives. Angew. Chem., Int. Ed. 2017,
56, 11649−11652.
1
(
of Tertiary Cycloalkanols via Radical C−C Bond Cleavage: A Route
to Distal Alkynylated Ketones. Org. Lett. 2015, 17, 4798−4801.
(
b) Ren, R.; Zhao, H.; Huan, L.; Zhu, C. Manganese-Catalyzed
Oxidative Azidation of Cyclobutanols: Regiospecific Synthesis of
Alkyl Azides by C−C Bond Cleavage. Angew. Chem., Int. Ed. 2015, 54,
(19) (a) Marciniec, B. Hydrosilylation: A Comprehensive Reviews on
Recent Advances; Springer: Berlin, 2009. (b) Brook, M. A. Silicon in
Organic, Organometallic and Polymer Chemistry; Wiley: New York,
2000. (c) Marciniec, B. Catalysis by Transition Metal Complexes of
Alkene Silylation−Recent Progress and Mechanistic Implications.
Coord. Chem. Rev. 2005, 249, 2374−2390.
1
2692−12696. (c) Jia, K.; Zhang, F.; Huang, H.; Chen, Y. Visible-
3
Light-Induced Alkoxyl Radical Generation Enables Selective C(sp )−
C(sp ) Bond Cleavage and Functionalizations. J. Am. Chem. Soc.
3
2016, 138, 1514−1517. (d) Ren, R.; Wu, Z.; Xu, Y.; Zhu, C. C−C
Bond-Forming Strategy by Manganese-Catalyzed Oxidative Ring-
Opening Cyanation and Ethynylation of Cyclobutanol Derivatives.
Angew. Chem., Int. Ed. 2016, 55, 2866−2869. (e) Wang, D.; Ren, R.;
Zhu, C. Manganese-Promoted Ring-Opening Hydrazination of
Cyclobutanols: Synthesis of Alkyl Hydrazines. J. Org. Chem. 2016,
(20) (a) Buslov, I.; Becouse, J.; Mazza, S.; Montandon-Clerc, M.;
Hu, X. Chemoselective Alkene Hydrosilylation Catalyzed by Nickel
Pincer Complexes. Angew. Chem., Int. Ed. 2015, 54, 14523−14526.
(
b) Ibrahim, A. D.; Entsminger, S. W.; Zhu, L.; Fout, A. R. A Highly
Chemoselective Cobalt Catalyst for the Hydrosilylation of Alkenes
using Tertiary Silanes and Hydrosiloxanes. ACS Catal. 2016, 6, 3589−
8
1, 8043−8049. (f) Li, Z.-L.; Li, X.-H.; Wang, N.; Yang, N.-Y.; Liu,
3
593.
X.-Y. Radical-Mediated 1,2-Formyl/Carbonyl Functionalization of
Alkenes and Application to the Construction of Medium-Sized Rings.
Angew. Chem., Int. Ed. 2016, 55, 15100−15104. (g) Guo, J.-J.; Hu, A.;
Chen, Y.; Sun, J.; Tang, H.; Zuo, Z. Photocatalytic C−C Bond
Cleavage and Amination of Cycloalkanols by Cerium(III) Chloride
Complex. Angew. Chem., Int. Ed. 2016, 55, 15319−15322. (h) Davis,
D. C.; Haskins, C. W.; Dai, M. Radical Cyclopropanol Ring Opening
Initiated Tandem Cyclizations for Efficient Synthesis of Phenan-
thridines and Oxindoles. Synlett 2017, 28, 913−918.
(
(
12) (a) Sorin, G.; Martinez Mallorquin, R.; Contie, Y.; Baralle, A.;
Malacria, M.; Goddard, J.-P.; Fensterbank, L. Oxidation of Alkyl
Trifluoroborates: An Opportunity for Tin-Free Radical Chemistry.
Angew. Chem., Int. Ed. 2010, 49, 8721−8723. (b) Huang, H.; Zhang,
G.; Gong, L.; Zhang, S.; Chen, Y. Visible-Light-Induced Chemo-
selective Deboronative Alkynylation under Biomolecule-Compatible
Conditions. J. Am. Chem. Soc. 2014, 136, 2280−2283.
E
Org. Lett. XXXX, XXX, XXX−XXX