Page 5 of 7
ACS Catalysis
of Levulinic Acid to γ-Valerolactone. Nat. Commun. 2015, 6,
(19) Carenco, S.; Leyva-Pérez, A.; Concepción, P.; Boissière,
C.; Mézailles, N.; Sanchez, C.; Corma, A. Nickel Phosphide
Nanocatalysts for the Chemoselective Hydrogenation of Al-
kynes. Nano Today 2012, 7, 21–28.
(20) Yang, S.; Peng, L.; Oveisi, E.; Bulut, S.; Sun, D. T.; Asgari,
M.; Trukhina, O.; Queen, W. L. MOF-Derived Cobalt Phos-
phide/Carbon Nanocubes for Selective Hydrogenation of Ni-
troarenes to Anilines. Chem. - Eur. J. 2018, 24, 4234−4238.
(21) De, S.; Zhang, J.; Luque, R.; Yan, N. Ni-based bimetallic
heterogeneous catalysts for energy and environmental applica-
tions. Energy Environ. Sci. 2016, 9, 3314−3347.
(22) Jia, S.; Liu, K.; Xu, Z.; Yan, P.; Xu, W.; Liu, X.; Zhang, Z.
C. Reaction Media Dominated Product Selectivity in the Isom-
erization of Glucose by Chromium Trichloride: From Aqueous
to Non-Aqueous Systems. Catal. Today 2014, 234, 83−90.
(23) Teong, S. P.; Yi, G.; Zhang, Y. Hydroxymethylfurfural Pro-
duction from Bioresources: Past, Present and Future. Green
Chem. 2014, 16, 2015–2026.
(24) van Putten, R. J.; Van Der Waal, J. C.; De Jong, E.; Rasren-
dra, C. B.; Heeres, H. J.; De Vries, J. G. Hydroxymethylfurfural,
A Versatile Platform Chemical Made from Renewable Re-
sources. Chem. Rev. 2013, 113, 1499−1597.
1
2
3
4
5
6
7
8
6540–6549.
(3) Sankar, M.; Dimitratos, N.; Miedziak, P. J.; Wells, P. P.;
Kiely, C. J.; Hutchings, G. J. Designing Bimetallic Catalysts for
a Green and Sustainable Future. Chem. Soc. Rev. 2012, 41,
8099-8139.
(4) Fang, H.; Yang, J.; Wen, M.; Wu, Q. Nanoalloy Materials
for Chemical Catalysis. Adv. Mater. 2018, 30, 1705698.
(5) Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J.
Nanostructured Pt-Alloy Electrocatalysts for PEM Fuel Cell
Oxygen Reduction Reaction. Chem. Soc. Rev. 2010, 39,
2184−2202.
(6) Gilroy, K. D.; Ruditskiy, A.; Peng, H.-C.; Qin, D.; Xia, Y.
Bimetallic Nanocrystals: Syntheses, Properties, and Applica-
tions. Chem. Rev. 2016, 116, 10414−10472.
(7) Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.;
Sanchez, C. Nanoscaled Metal Borides and Phosphides: Recent
Developments and Perspectives. Chem. Rev. 2013, 113, 7981–
8065.
(8) Shi, Y.; Zhang, B. Recent Advances in Transition Metal
Phosphide Nanomaterials: Synthesis and Applications in Hy-
drogen Evolution Reaction. Chem. Soc. Rev. 2016, 45, 1529–
1541.
(9) Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.;
Schaak, R. E. Highly Active Electrocatalysis of the Hydrogen
Evolution Reaction by Cobalt Phosphide Nanoparticles. Angew.
Chem. Int. Ed. 2014, 53, 5427–5430.
(10) Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.;
Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured
Nickel Phosphide as an Electrocatalyst for the Hydrogen Evo-
lution Reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.
(11) Alvarez-Galvan, M. C.; Campos-Martin, J. M.; Fierro, J. L.
G. Transition Metal Phosphides for the Catalytic Hydrodeoxy-
genation of Waste Oils into Green Diesel. Catalysts 2019, 9,
293.
(12) Berenguer, A.; Sankaranarayanan, T. M.; Gomez, G.;
Moreno, I.; Coronado, J. M.; Pizarro, P.; Serrano, D. P. Evalua-
tion of Transition Metal Phosphides Supported on Ordered
Mesoporous Materials as Catalysts for Phenol Hydrodeoxygen-
ation. Green Chem. 2016, 18, 1938−1951.
(13) Oyama, S. T.; Gott, T.; Zhao, H.; Lee, Y. K. Transition
Metal Phosphide Hydroprocessing Catalysts: A Review. Catal.
Today 2009, 143, 94−107.
(14) Oyama, S. T. Novel Catalysts for Advanced Hydropro-
cessing: Transition Metal Phosphides. J. Catal. 2003, 216, 343–
352.
(15) Albani, D.; Karajovic, K.; Tata, B.; Li, Q.; Mitchell, S.;
López, N.; Pérez-Ramírez, J. Ensemble Design in Nickel Phos-
phide Catalysts for Alkyne Semi‐Hydrogenation. Chem-
CatChem 2019, 11, 457-464.
(16) Gao, R. J.; Pan, L.; Wang, H. W.; Zhang, X. W.; Wang, L.;
Zou, J. J. Ultradispersed Nickel Phosphide on Phosphorus-
Doped Carbon with Tailored d-Band Center for Efficient and
Chemoselective Hydrogenation of Nitroarenes. ACS Catal.
2018, 8, 8420-8429.
(17) Shi, J. J.; Feng, H. J.; Qv, C. L.; Zhao, D.; Hong, S. G.;
Zhang, N. One-pot Synthesized CePO4/Ni2P Nanocomposites
as General Hydrogenation Catalysts: The Attractive Contribu-
tion of CePO4. Appl. Catal. A 2018, 561, 127–136.
(18) Chen, Y.; Li, C.; Zhou, J.; Zhang, S.; Rao, D.; He, S.; Wei,
M.; Evans, D. G.; Duan, X. Metal Phosphides Derived from
Hydrotalcite Precursors toward the Selective Hydrogenation of
Phenylacetylene. ACS Catal. 2015, 5, 5756−5765.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(25) Nakagawa, Y.; Tamura, M.; Tomishige, K. Catalytic Re-
duction of Biomass-Derived Furanic Compounds with Hydro-
gen. ACS Catal. 2013, 3, 2655−2668.
(26) Son, P. A.; Nishimura, S.; Ebitani, K. Synthesis of Le-
vulinic Acid from Fructose Using Amberlyst-15 as a Solid Acid
Catalyst. React. Kinet. Mech. Catal. 2012, 106, 185–192.
(27) Takagaki, A.; Ohara, M.; Nishimura, S.; Ebitani, K. A One-
Pot Reaction for Biorefinery: Combination of Solid Acid and
Base Catalysts for Direct Production of 5-Hydroxymethylfurfu-
ral from Saccharides. Chem. Commun. 2009, 6276–6278.
(28) Román-Leshkov, Y.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J.
A. Production of Dimethylfuran for Liquid Fuels from Bio-
mass-Derived Carbohydrates. Nature 2007, 447, 982–985.
(29) Wozniak, B.; Li, Y.; Hinze, S.; Tin, S.; de Vries, J. G. Effi-
cient Synthesis of Biomass-Derived N-Substituted 2-Hy-
droxymethyl-5-Methyl-Pyrroles in Two Steps from 5-Hy-
droxymethylfurfural. Eur. J. Org. Chem. 2018, 17, 2009−2012.
(30) Wozniak, B.; Spannenberg, A.; Li, Y.; Hinze, S; de Vries,
J. G. Cyclopentanone Derivatives from 5-Hydroxymethylfurfu-
ral via 1-Hydroxyhexane-2,5-dione as Intermediate. ChemSus-
Chem 2018, 11, 356–359.
(31) Xu, Z.; Yan, P.; Li, H.; Liu, K.; Liu, X.; Jia. S.; Zhang, Z.
C. Active Cp*Iridium(III) Complex with ortho-Hydroxyl
Group Functionalized Bipyridine Ligand Containing an Elec-
tron-Donating Group for the Production of Diketone from 5-
HMF. ACS Catal. 2016, 6, 3784–3788.
(32) Wu, W. P.; Xu, Y. J.; Zhu, R.; Cui, M. S.; Li, X. L.; Deng,
J.; Fu, Y. Selective Conversion of 5-Hydroxymethylfuralde-
hyde Using Cp*Ir Catalysts in Aqueous Formate Buffer Solu-
tion. ChemSusChem 2016, 9, 1209−1215.
(33) Xu, Z.; Yan, P.; Xu, W.; Liu, X.; Xia, Z.; Chung, B.; Jia, S.;
Zhang, Z. C. Hydrogenation/Hydrolytic Ring Opening of 5‑
HMF by Cp*-Iridium (III) Half-Sandwich Complexes for Bio-
ketones Synthesis. ACS Catal. 2015, 5, 788–792.
(34) Gupta, K.; Tyagi, D.; Dwivedi, A. D.; Mobin, S. M.; Singh,
S. K. Catalytic Transformation of Bio-Derived Furans to Valu-
able Ketoacids and Diketones by Water-Soluble Ruthenium
Catalysts. Green Chem. 2015, 17, 4618−4627.
ACS Paragon Plus Environment