Paper
Green Chemistry
we have proposed a pathway for Mn-HTS catalyzed oxidation of
cyclohexanone with molecular oxygen (Scheme 2). The
H-abstraction at the carbon adjacent to the oxygen in cyclohexa-
none (or adjacent to a double bond in enol-form isomers by
tautomerism) can most likely be promoted in the presence of
Ti species, and the production of radical at this position
7 S. A. Montzka, E. J. Dlugokencky and J. H. Butler, Nature,
2011, 476, 43–50.
8 S. Ghosh, S. S. Acharyya, S. Adak, L. N. S. Konathala,
T. Sasakib and R. Bal, Green Chem., 2014, 16, 2826–2834.
9 S. A. Chavan, D. Srinivas and P. Ratnasamy, J. Catal., 2002,
212, 39–45.
readily leads to the formation of cyclohexyl hydroperoxide with 10 Y. Usui and K. Sato, Green Chem., 2003, 5, 373–375.
oxygen. This product is prone to be captured by Ti–OH species 11 Z. Bohström and I. R.-L. K. Holmberg, Green Chem., 2010,
to produce Ti(OOCh) species, which can be decomposed into
12, 1861–1869.
4
3–45
active Ti(IV)–O species and a ketonyl radical.
The ketonyl 12 R. Raja, G. Sankar and J. M. Thomas, J. Am. Chem. Soc.,
radical then reacts to yield the radical species OHC–(CH ) –
1999, 121, 11926–11927.
2
4
C(O) by the ring opening via C–C scission; successive oxidation 13 P. Ratnasamy, D. Srinivas and H. Knözinger, Adv. Catal.,
3
4
steps lead to the formation of AA. In this oxidation reaction,
Mn species performs a dual role, promoting the production of 14 A. Corma, M. A. Camblor, P. Esteve, A. Martínez and
radical intermediates to increase the reaction rate and also the J. Pérez-Pariente, J. Catal., 1994, 145, 151–158.
tautomerism between cyclohexanone and the corresponding 15 E. V. Spinace, H. O. Pastore and U. Schuchardt, J. Catal.,
2004, 48, 1–169.
enolic form.
1995, 157, 631–635.
1
1
6 Y. Goa, P. Wu and T. Tatsumi, J. Phys. Chem. B, 2004, 108,
8401–8411.
7 M. Reichinger, W. Schmidt, M. W. E. van den Berg,
A. Aerts, J. A. Martens, C. E. A. Kirschhock, H. Gies and
W. Grünert, J. Catal., 2010, 269, 367–375.
4
. Conclusion
To summarize, the hollow-structured Mn-HTS demonstrates
superior catalytic activity and selectivity in the oxidation of 18 M. Moliner, P. Serna, Á. Cantin, G. Sastre, M. J. Díaz-
cyclohexanone to adipic acid with O
2
under mild solvent-free
Cabanas and A. Corma, J. Phys. Chem. C, 2008, 112, 19547–
and promoter-free conditions. The data in Table S1 in the
19554.
ESI,† compare the results obtained over hollow-structured Mn- 19 B. P. C. Hereijgers and B. M. Weckhuysen, J. Catal., 2010,
HTS and other catalytic systems used for this reaction. This 270, 16–25.
new HTS catalytic material behaving as a true heterogeneous 20 W. Fan, P. Wu, S. Namba and T. Tatsumi, J. Catal., 2006,
catalyst can be recycled and reused in several catalytic iter- 243, 183–191.
ations without losing its catalytic activity. This opens great per- 21 C. Shi, B. Zhu, M. Lin, J. Long and R. Wang, Catal. Today,
spectives in terms of catalytic industrial processes and sheds 2011, 175, 398–403.
light on developing strategies aimed at rendering titanosilicate 22 G. Zou, W. Zhong, Q. Xu, J. Xiao, C. Liu, Y. Li, L. Mao,
molecular sieves with new functionalities. Moreover, an inno- S. Kirk and D. Yin, Catal. Commun., 2015, 58, 46–52.
vative approach to produce AA avoids the nitric oxidation route 23 Y. Wang, M. Lin and A. Tuel, Microporous Mesoporous
which generates a strong greenhouse gas, and thus provides Mater., 2007, 102, 80–85.
an environmentally benign alternative for an important indus- 24 W.-S. Lee, M. C. Akatay, E. A. Stach, F. H. Ribeiro and
trial reaction.
W. N. Delgass, J. Catal., 2012, 287, 178–189.
2
2
5 J. C. Groen, T. Bach, U. Ziese, A. M. P. Donk, K. P. D. Jong,
J. A. Moulijn and J. P. Pe′rez-Ramirez, J. Am. Chem. Soc.,
2005, 127, 10792–10793.
Notes and references
6 G. Ricchiardi, A. Damin, S. Bordiga, C. Lamberti, G. Spano,
F. Rivetti and A. Zecchina, J. Am. Chem. Soc., 2001, 123,
11409–11419.
1
G.-J. Brink, I. W. C. E. Arends and R. A. Sheldon, Science,
000, 287, 1636–1639.
2
2
D. D. Davis and D. R. Kemp, in Kirk–Othmer Encyclopedia of 27 L. Wang, Y. Liu, W. Xie, H. Wu, X. Li, M. Y. He and P. Wu,
Chemical Technology, ed. J. I. Kroscwitz and M. Howe-Grant, J. Phys. Chem. C, 2008, 112, 6132–6138.
John Wiley & Sons, Inc., New York, 4th edn, 1991, vol. 1, 28 M. Baldi, F. Milella and J. M. Gallardo-Amores, J. Mater.
pp. 466–493.
Chem., 1998, 8, 2525–2531.
3
4
J. M. Thomas and R. Raja, Chem. Commun., 2001, 675–687.
F. Cavani and S. Alini, in Sustainable Industrial Chemistry, 30 Y. Xu, B. Lei, L. Guo, W. Zhou and Y. Liu, J. Hazard. Mater.,
29 M. Kang and M.-H. Lee, Appl. Catal., A, 2005, 284, 215–222.
ed. F. Cavani, G. Centi, S. Perathoner and F. Trifirò, Wiley-
VCH, Weinheim, 2009, pp. 367–425.
A. Castellan, J. C. J. Bart and S. Cavallaro, Catal. Today,
2008, 160, 78–82.
31 P. Dhage, A. Samokhvalov, D. Repala, E. C. Duin and
B. J. Tatarchuk, Phys. Chem. Chem. Phys., 2011, 13, 2179–
2187.
5
6
1
991, 9, 237–254.
U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. da 32 C.A. Emeis, J. Catal., 1993, 141, 323–743.
Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinacé and 33 T. Punniyamurthy, S. Velusamy and J. Iqbal, Chem. Rev.,
E. L. Pires, Appl. Catal., A, 2001, 211, 1–17.
2005, 105, 2329–2363.
Green Chem.
This journal is © The Royal Society of Chemistry 2015