COMMUNICATIONS
[
4] a) A. Fürstner, G. Seidel, Angew. Chem. 1998, 110, 1758 ± 1760;
Angew. Chem. Int. Ed. 1998, 37, 1734 ± 1736. b) A. Fürstner, O. Guth,
A. Rumbo, G. Seidel, J. Am. Chem. Soc. 1999, 121, 11108 ± 11113.
5] a) R. R. Schrock, D. N. Clark, J. Sancho, J. H. Wengrovius, S. M.
Rocklage, S. F. Pedersen, Organometallics 1982, 1, 1645 ± 1651; b) J. H.
Freudenberger, R. R. Schrock, M. R. Churchill, A. L. Rheingold, J. W.
Ziller, Organometallics 1984, 3, 1563 ± 1573; c) R. R. Schrock, Poly-
hedron 1995, 14, 3177 ± 3195.
55 (21); HRMS (C26
42 4
H O Si): m/z: 446.2850 (calcd: 446.2852);
elemental analysis (%) calcd for C26
9.48; found: C 70.08, H 9.42.
42 4
H O Si (446.71): C 69.91, H
[
[19] R. F. Newton, D. P. Reynolds, C. F. Webb, S. M. Roberts, J. Chem. Soc.
Perkin Trans. 1 1981, 2055 ± 2058.
[20] We consider the ªeconomy of stepsº as a strategic goal for target
oriented syntheses in general, see: A. Fürstner, Synlett 1999, 1523 ±
1533.
[
[
6] A. Fürstner, C. Mathes, C. W. Lehmann, J. Am. Chem. Soc. 1999, 121,
[21] Compound 1: colorless needles; mp 76.5 ± 77.58C (Et
2
O/pentane)
);
O/hexane)]; [a]2
0
� 185.0 (0.15, CHCl
9
453 ± 9454.
7] For a review on preparation and coordination chemistry of [Mo-
N(tBu)(Ar)} ] see: C. C. Cummins, Chem. Commun. 1998, 1777 ±
786.
[ref [10c] 73 ± 768 (Et
H NMR (600 MHz, CDCl
2
D
3
1
3
): d 0.89 (3H, t, J 6.8 Hz), 1.20 ± 2.18
{
3
(16H, m), 2.20 (1H, ddd, J 13.2, 9.4, 3.3 Hz), 2.21 (1H, dd, J 18.9,
9.3 Hz), 2.29 (1H, dt, J 13.2, 8.8 Hz), 2.40 (1H, ddd, J 13.3, 8.7,
3.2 Hz), 2.80 (1H, ddd, J 18.8, 7.8, 1.2 Hz), 4.14 (1H, dt, J 7.9,
9.2 Hz), 5.20 (1H, dt, J 8.5, 6.0 Hz), 5.35 (1H, ddd, J 10.4, 9.6,
5.5 Hz), 5.60 (1H, dt, J 10.5, 5.9 Hz), 5.81 (1H, dd, J 15.9, 8.7 Hz),
1
[
8] For a short review on alkyne metathesis see: U. H. F. Bunz, L.
Kloppenburg, Angew. Chem. 1999, 111, 503 ± 505; Angew. Chem. Int.
Ed. 1999, 38, 478 ± 481.
9] a) C. Cimino, A. Crispino, V. Di Marzo, G. Sodano, A. Spinella, G.
Villani, Experientia 1991, 47, 56 ± 60; b) G. Cimino, A. Spinella, G.
Sodano, Tetrahedron Lett. 1989, 30, 3589 ± 3592; c) G. Cimino, A.
Crispino, V. Di Marzo, A. Spinella, G. Sodano, J. Org. Chem. 1991, 56,
13
[
6.11 (1H, dd, J 15.8, 6.6 Hz); C NMR (150 MHz, CDCl ): d 14.0,
3
22.5, 23.9, 25.3, 25.5, 25.6, 31.5, 34.0, 34.2, 45.5, 55.0, 57.9, 71.7, 71.8,
128.9, 129.3, 131.9, 134.7, 173.2, 213.1. IR (Kbr): nÄ 3431, 3002, 2938,
�
1
2857, 1726, 1377, 1243, 1160, 1041, 728 cm . MS (EI): m/z: 334 ([M ],
24), 316 (38), 298 (13), 262 (39), 208 (63), 163 (64), 151 (22), 145
(15),133 (25), 121 (28), 107 (42), 91 (78), 79 (100), 67 (83), 55 (93).
[22] For a study on the solid phase synthesis of prostaglandin derivatives
and of small prostaglandin libraries see: a) L. A. Thompson, F. L.
Moore, Y. C. Moon, J. A. Ellman, J. Org. Chem. 1998, 63, 2066 ± 2067;
b) D. R. Dragoli, L. A. Thompson, J. OꢁBrien, J. A. Ellman, J. Comb.
Chem. 1999, 1, 534 ± 539; c) K. J. Lee, A. Angulo, P. Ghazal, K. D.
Janda, Org. Lett. 1999, 1, 1859 ± 1862.
2907 ± 2911.
[
10] Compound 1 and other prostaglandin lactones have previously been
prepared by conventional macrolactonization of the parent prosta-
glandins, see: a) E. J. Corey, K. C. Nicolaou, L. S. Melvin, J. Am.
Chem. Soc. 1975, 97, 653 ± 654; b) K. Narasaka, K. Maruyama, T.
Mukaiyama, Chem. Lett. 1978, 885 ± 888; c) G. C. Bundy, D. C.
Peterson, J. C. Cornette, W. L. Miller, C. H. Spilman, J. W. Wilks, J.
Med. Chem. 1983, 26, 1089 ± 1099; d) G. D. Bundy, D. R. Morton, D. C.
Peterson, E. E. Nishizawa, W. L. Miller, J. Med. Chem. 1983, 26, 790 ±
799.
[
11] For timely and comprehensive treatises see: a) Prostaglandins,
Leucotrienes and Other Eicosanoids. From Biogenesis to Clinical
Applications (Eds.: F. Marks, G. Fürstenberger), WILEY-VCH,
Weinheim, 1999; b) P. W. Collins, S. W. Djuric, Chem. Rev. 1993, 93,
1533 ± 1564.
[
12] For reviews on ªthree-component couplingº see: a) R. Noyori, M.
Suzuki, Angew. Chem. 1984, 96, 854 ± 882; Angew. Chem. Int. Ed.
Engl. 1984, 23, 847; b) R. Noyori, Asymmetric Catalysis in Organic
Synthesis, Wiley, New York, 1994, pp. 298 ± 322.
IR-Thermographic Screening of Thermoneutral
or Endothermic Transformations: The Ring-
Closing Olefin Metathesis Reaction
[
13] S-M. L. Chen, R. E. Schaub, C. V. Grundziskas, J. Org. Chem. 1978,
4
3, 3450 ± 3454. This paper pretends that the hydrostannylation of the
Manfred T. Reetz,* Michael H. Becker, Monika Liebl,
and Alois Fürstner
TES ether of alcohol 5 is regio- and diastereoselective according to
13
C NMR data. Careful analysis of the crude product by HPLC,
however, shows that the purity is only about 90%. This material can
be used directly in the next step, because the isomeric by-products do
not undergo productive 1,4-addition, see: C. R. Johnson, T. D.
Penning, J. Am. Chem. Soc. 1988, 110, 4726 ± 4735.
Whereas combinatorial chemistry in the area of pharma-
ceutical research has reached maturity,[ the use of appro-
priate systems in catalysis still poses challenges. Recently we
1]
[2]
[
[
14] a) For the preparation of enone 7 see: R. Noyori, I. Tomino, M.
Yamada, M. Nishizawa, J. Am. Chem. Soc. 1984, 106, 6717 ± 6725;
b) C. J. Forsyth, J. Clardy, J. Am. Chem. Soc. 1990, 112, 3497 ±
reported the first cases of IR-thermographic detection and
parallel screening of enantioselectivity in transition metal
catalyzed and biocatalyzed organic transformations.[ The
test reactions chosen were all exothermic processes, enantio-
selectivity showing up as ªhot spotsº in the respective IR-
thermographic images. IR-thermography had previously been
used as a detection and/or screening system in achiral
exothermic reactions mediated by heterogeneous catalysts.[
3]
3
505.
15] a) Iodide 9 was prepared by treatment of commercially available
-butyn-1-ol with PPh , I , and imidazole according to a literature
procedure: G. L. Lange, C. Gottardo, Synth. Commun. 1990, 20,
2
3
2
1
3
473 ± 1479; b) acid 12 was prepared from commercially available
-pentyn-1-ol as described in: M. F. Ansell, J. C. Emmet, R. V.
4]
Coombs, J. Chem. Soc. C 1968, 217 ± 225.
[
[
[
16] The three-component coupling was essentially carried out as descri-
bed in: M. Suzuki, Y. Morita, H. Koyano, M. Koga, R. Noyori,
Tetrahedron 1990, 46, 4809 ± 4822.
Indeed, it was quietly assumed that only exothermic processes
[2, 4, 5]
can be assayed by this method.
We now report that
exothermicity is not a requirement in IR-thermographic
screening of catalysts. Specifically, we demonstrate for the
first time that in appropriate systems endothermic or even
thermoneutral reactions can be successfully screened by time-
17] a) Determined by HPLC on a Chiracel OD-H column with n-heptane/
2-propanol as mobile phase. b) Determined by HPLC on a Chiralpak
AD column with n-heptane/2-propanol (95:5) as mobile phase.
2
0
18] Compound 14: colorless syrup; [a]
D
� 189.7 (c 0.23, CHCl
3
);
1
H NMR (300 MHz, CDCl
3
): d 0.03 (3H, s), 0.04 (3H, s), 0.87 (9H,
s), 1.20 ± 2.50 (21H, m), 2.69 (1H, dd, J 18.4, 7.8 Hz), 2.98 (1H, d, J
1
5.4 Hz), 4.0 (1H, m), 5.10 (1H, dt, J 8.0, 5.2 Hz), 5.88 (2H, m);
[*] Prof. Dr. M. T. Reetz, Dipl.-Chem. M. H. Becker,
Dipl.-Chem. M. Liebl, Prof. Dr. A. Fürstner
Max-Planck-Institut für Kohlenforschung
Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
Fax : ( 49)208-306-2985
13
C NMR (75 MHz, CDCl
3
): d � 4.8, � 4.6, 14.0, 17.5, 18.0, 19.0, 22.5,
2
1
1
3
2.6, 25.5, 25.7, 31.6, 34.1, 34.9, 46.6, 54.8, 56.1, 72.2, 73.0, 79.3, 79.6,
30.4, 132.3, 172.4, 211.8; IR (neat): nÄ 2955, 2930, 2857, 1746, 1252,
�
1
154, 1115, 964, 839, 778 cm ; MS (EI): m/z: 446 ([M ], 1), 431 (1),
89 (33), 317 (18), 297 (8), 225 (5), 155 (5), 129 (10), 91(12), 75 (100),
E-mail: reetz@mpi-muelheim.mpg.de
1236
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
0570-0833/00/3907-1236 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2000, 39, No. 7