Journal of the American Chemical Society
Communication
Sciences. L.M. is a member of the Institut Universitaire de
France. The Humboldt foundation is also acknowledged.
REFERENCES
■
(
1) For reviews, see: (a) Wigley, D. E. Prog. Inorg. Chem. 1994, 42, 239.
b) Schrock, R. R. Acc. Chem. Res. 1990, 23, 158. (c) Duncan, A. P.;
(
Bergman, R. G. Chem. Rec. 2002, 2, 431. (d) Hazari, N.; Mountford, P.
Acc. Chem. Res. 2005, 38, 839. (e) Mindiola, D. J. Acc. Chem. Res. 2006,
3
(
9, 813.
2) (a) Giesbrecht, G. R.; Gordon, J. C. Dalton Trans. 2004, 2387.
b) Liu, Z. X.; Chen, Y. F. Sci. Sin. Chim. 2011, 41, 304.
(
(
c) Summerscales, O. T.; Gordon, J. C. RSC Adv. 2013, 3, 6682.
Figure 4. Molecular structures of 6 and 8 with thermal ellipsoids at the
(3) (a) Trifonov, A. A.; Bochkarev, M. N.; Schumann, H.; Loebel, J.
30% probability level. DIPP isopropyl groups, hydrogen atoms (except
Angew. Chem., Int. Ed. 1991, 30, 1149. (b) Xie, Z. W.; Wang, S. W.; Yang,
Q. C.; Mak, T. C. W. Organometallics 1999, 18, 1578. (c) Wang, S. W.;
Yang, Q. C.; Mak, T. C. W.; Xie, Z. W. Organometallics 1999, 18, 5511.
the hydrogen atom on the borane), and solvent molecules in the lattice
have been removed for clarity.
(d) Chan, H. S.; Li, H. W.; Xie, Z. W. Chem. Commun. 2002, 652.
(e) Gordon, J. C.; Giesbrecht, G. R.; Clark, D. L.; Hay, P. J.; Keogh, D.
1
mostly disappeared in 16 h. A scaled-up reaction at 50 °C gave
W.; Poli, R.; Scott, B. L.; Watkin, J. G. Organometallics 2002, 21, 4726.
(f) Beetstra, D. J.; Meetsma, A.; Hessen, B.; Teuben, J. H.
Organometallics 2003, 22, 4372. (g) Avent, A. G.; Hitchcock, P. B.;
Khvostov, A. V.; Lappert, M. F.; Protchenko, A. V. Dalton Trans. 2004,
complex 7 in 52% yield. The molecular structure of 7 is shown in
Figure S2. The scandium-terminal imido intermediate I can be
trapped as a THF adduct (8) (Figure 4). The reaction of complex
2272. (h) Cui, D. M.; Nishiura, M.; Hou, Z. M. Angew. Chem., Int. Ed.
2005, 44, 959. (i) Conroy, K. D.; Piers, W. E.; Parvez, M. Organometallics
2009, 28, 6228. (j) Pan, C. L.; Chen, W.; Song, S. Y.; Zhang, H. J.; Li, X.
1
with 1 equiv of 9-BBN in THF generates complex 8 almost
quantitatively. The isolated yield is 45%, due to some loss in the
washing procedure of the crude product by a toluene/hexane
mixture in order to remove the byproduct DMAP→9-BBN
adduct. XRD analysis shows that the ScN(imido) bond
W. Inorg. Chem. 2009, 48, 6344. (k) Pan, C. L.; Chen, W.; Song, J. F.
Organometallics 2011, 30, 2252. (l) Schadle, D.; Schadle, C.; Tornroos,
̈
̈
̈
K. W.; Anwander, R. Organometallics 2012, 31, 5101. (m) Hong, J. Q.;
Zhang, L. X.; Wang, K.; Weng, L. H.; Zhou, X. G. Chem.Eur. J. 2013,
19, 7865. (n) Hong, J. Q.; Zhang, L. X.; Wang, K.; Chen, Z. X.; Wu, L.
M.; Zhou, X. G. Organometallics 2013, 32, 7312.
imido
distance and Sc−N −C bond angle in 7 are 1.852(4) Å and
o
1
68.6(3) , respectively. These values are close to those found in
5a
complex 1 (1.881(5) Å and 169.6(5)°, respectively).
(4) (a) Scott, J.; Basuli, F.; Fout, A. R.; Huffman, J. C.; Mindiola, D. J.
In summary, a coordinatively unsaturated scandium-terminal
imido complex is generated by removing the coordinated Lewis
base, 4-(dimethylamino)pyridine, using a Lewis acid, such as a
borane. The reactivity of this base-free scandium-terminal imido
complex appears to be very high and especially for the activation
of C−H bond of terminal alkene. Also, it can afford a
cycloaddition reaction with an internal alkyne and trigger
dehydrofluorination of fluoro-substituted benzenes or alkanes
at room temperature. DFT mechanistic investigation of the
reactivity with the 3,3-dimethyl-1-butene indicates that the
reaction is a direct vinyl activation rather than a two-step reaction
involving first an insertion. Similarly, computational studies of
the dehydrofluorination reaction of C F H with complex 1
Angew. Chem., Int. Ed. 2008, 47, 8502. (b) Wicker, B. F.; Scott, J.; Fout,
A. R.; Pink, M.; Mindiola, D. J. Organometallics 2011, 30, 2453.
(
c) Wicker, B. F.; Fan, H. J.; Hickey, A. K.; Crestani, M. G.; Scott, J.;
Pink, M.; Mindiola, D. J. J. Am. Chem. Soc. 2012, 134, 20081.
5) (a) Lu, E. L.; Li, Y. X.; Chen, Y. F. Chem. Commun. 2010, 46, 4469.
b) Lu, E. L.; Chu, J. X.; Borzov, M. V.; Chen, Y. F.; Li, G. Y. Chem.
(
(
Commun. 2011, 47, 743.
(6) (a) Jian, Z. B.; Rong, W. F.; Mou, Z. H.; Pan, Y. P.; Xie, H. Y.; Cui,
D. M. Chem. Commun. 2012, 48, 7516. (b) Chu, T.; Piers, W. E.; Dutton,
J. L.; Parvez, M. Organometallics 2013, 32, 1159. (c) Rong, W. F.; Cheng,
J. H.; Mou, Z. H.; Xie, Y.; Cui, D. M. Organometallics 2013, 32, 5523.
(7) (a) Chu, J. X.; Lu, E. L.; Liu, Z. X.; Chen, Y. F.; Leng, X. B.; Song, H.
B. Angew. Chem., Int. Ed. 2011, 50, 7677. (b) Lu, E. L.; Zhou, Q. H.; Li, Y.
X.; Chu, J. X.; Chen, Y. F.; Leng, X. B.; Sun, J. Chem. Commun. 2012, 48,
6
5
demonstrate that it involves first an easy C−H activation step
followed by the most energy demanding ortho C−F abstraction.
3
403. (c) Chu, J. X.; Lu, E. L.; Chen, Y. F.; Leng, X. B. Organometallics
2
013, 32, 1137. (d) Chu, J. X.; Kefalidis, C. E.; Maron, L.; Leng, X. B.;
Chen, Y. F. J. Am. Chem. Soc. 2013, 135, 8165.
ASSOCIATED CONTENT
Supporting Information
Experimental and computational details and a zip file containing
■
(8) DMAP-containing scandium-terminal imido complex can react
with phenylacetylene, which has the relatively acidic proton, to give a
deprotonated product of scandium anilido phenylacetylido complex.
*
S
The same observation was reported by Piers and co-workers in ref 6b.
1
(
9) Some featured signals for DMAP→BBN adduct in the H NMR
3
spectrum (300 MHz, C D , 25 °C): δ 8.01 (d, J = 7.2 Hz, 2H; ortho
H of DMAP), 5.55 (d, J = 7.2 Hz, 2H; meta H of DMAP), 1.94 (s,
6
6
HH
3
HH
AUTHOR INFORMATION
6
H; CNMe ). DMAP→BBN adduct was also structurally characterized
2
by single-crystal XRD, and its molecular structure is shown in Figure S3.
10) Theoretical prediction of pK values of aromatic heterocyclic
(
a
compounds in DMSO: Shen, K.; Fu, Y.; Li, J. N.; Liu, L.; Guo, Q. X.
Tetrahedron 2007, 63, 1568.
Notes
(
11) Fout, A. R.; Scott, J.; Miller, D. L.; Bailey, B. C.; Pink, M.;
Mindiola, D. J. Organometallics 2009, 28, 331.
12) Maron, L.; Werkema, E. L.; Perrin, L.; Eisenstein, O.; Andersen, R.
A. J. Am. Chem. Soc. 2004, 127, 279.
The authors declare no competing financial interest.
(
ACKNOWLEDGMENTS
This work was supported by the National Natural Science
Foundation of China (Grant Nos. 21325210, 21132002, and
■
2
1121062), the State Key Basic Research & Development
Program (Grant No. 2012CB821600), and Chinese Academy of
1
0897
dx.doi.org/10.1021/ja5061559 | J. Am. Chem. Soc. 2014, 136, 10894−10897