Pyridyl Radicals
1329
products, in particular acetylene, HCN, and diacetylene. The
fragmentation is driven by the formation of the very stable CN
triple bond, and therefore the yield of pyridyl radicals is lower
than that of phenyl radicals 6 from the analogous precursors
iodobenzene or azobenzene. By carefully analysing the spectra
and comparison with results from DFT calculations we were
able to identify all three isomers of 2.
[3] N. R. Hore, D. K. Russell, J. Chem. Soc., Perkin Trans. 2 1998, 2, 269.
[4] X. L. Cheng, Y. Y. Zhao, Z. Y. Zhou, J. Mol. Struct. THEOCHEM
[5] X. L. Cheng, J. Mol. Struct. THEOCHEM 2005, 731, 89. doi:10.1016/
[6] X. Cheng, L. Niu, Y. Zhao, Z. Zhou, Spectrochim. Acta A 2004, 60,
The bimolecular reaction of radicals 2 with O2 was induced
by annealing 1–2 % O2-doped argon matrices containing 2 for
several minutes at 25–35 K. This suggests that, as expected, the
reaction between radicals 2 and O2 has no thermal activation
barrier. The only products observed are the pyridylperoxy
radicals 3. For 3a and 3b two conformers, syn and anti, are
possible, but only for 3b are both conformers observed after the
thermal reaction between 2b and O2, while for 3a the more
stable anti-isomer is formed exclusively. The conformers form
photostationary equilibria, and visible light irradiation results in
syn–anti isomerisation. For both 3a and 3b the anti-conformers
with the terminal oxygen atom pointing away from the nitrogen
atom have the smaller dipole moment and are thermodynami-
cally more stable by 1.84 and 0.67 kcal molꢀ1, respectively.
For both 3a and 3b, both the syn- and the anti-conformer can be
generated by irradiation in photostationary equilibria. Even by
annealing the matrices at temperatures above 30 K the confor-
mers don’t equilibrate thermally, which suggests a substantial
thermal activation barrier for the isomerisation, in agreement
with the calculations (Fig. 4). On the other hand, the thermal
reaction between 2a and O2 produces syn-3a exclusively, while
under similar conditions 2b reacts to a mixture of syn- and anti-
3b. The reaction of the pyridyl radicals 3 with O2 is exothermic,
and the excess energy released might result in a syn–anti
equilibration. Since the energy difference between syn- and
anti-3b is small (the calculations are not accurate enough to
reproduce these small differences reliably) both conformers
could be formed in similar amounts in the matrix.
[7] R. F. Liu, T. T. S. Huang, J. Tittle, D. H. Xia, J. Phys. Chem. A 2000,
[8] S. W. Wren, K. M. Vogelhuber, J. M. Garver, S. Kato, L. Sheps,
V. M. Bierbaum, W. C. Lineberger, J. Am. Chem. Soc. 2012, 134,
[9] M. Winkler, W. Sander, Aust. J. Chem. 2010, 63, 1013. doi:10.1071/
[10] H. H. Nam, G. E. Leroi, J. Am. Chem. Soc. 1988, 110, 4096.
[11] M. Winkler, B. Cakir, W. Sander, J. Am. Chem. Soc. 2004, 126, 6135.
[12] S. L. Debbert, C. J. Cramer, Int. J. Mass Spectrom. 2000, 201, 1.
[13] P. E. Williams, B. J. Jankiewicz, L. Yang, H. I. Kentta¨maa, Chem. Rev.
[14] C. J. Cramer, J. Am. Chem. Soc. 1998, 120, 6261. doi:10.1021/
[15] C. J. Cramer, S. Debbert, Chem. Phys. Lett. 1998, 287, 320.
[16] P. H. Kasai, D. McLeod, Jr, J. Am. Chem. Soc. 1972, 94, 720.
[17] J. E. Bennett, J. A. Howard, J. Am. Chem. Soc. 1973, 95, 4008.
[18] M. J. Fadden, C. M. Hadad, J. Phys. Chem. A 2000, 104, 6088.
[19] Z. B. Alfassi, G. I. Khaikin, P. Neta, J. Phys. Chem. 1995, 99, 4544.
[20] Z. Tian, Y. Li, T. Zhang, A. Zhu, F. Qi, J. Phys. Chem. A 2008, 112,
[21] A. Mardyukov, W. Sander, Chem. – Eur. J. 2009, 15, 1462.
Prolonged visible light irradiation, or UV irradiation, results
in the insertion of one oxygen atom into the pyridine ring to yield
seven-membered heterocycles. Due to the low yields of these
photoproducts, only 10 could be identified as the product of the
rearrangement of 3a, whereas the photoproducts of 3b and 3c
could not be identified. Overall, the reaction of the pyridyl
radicals 2 with O2 and the subsequent photochemistry follows
the same path as that of the phenyl radical 6.
[22] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas,
J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2009
(Gaussian, Inc.: Wallingford, CT).
Supplementary Material
13
The 1H- and C-NMR spectra of 3,30-azopyridine and the
spectroscopic and calculated data of the pyridyl radicals 2a–c
and the pyridylperoxy radicals 3a–c are available on the
Journal’s website.
[24] S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
[25] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785. doi:10.1103/
Acknowledgements
This work was financially supported by the Cluster of Excellence RESOLV
(EXC 1069) funded by the Deutsche Forschungsgemeinschaft and the Fonds
der Chemischen Industrie.
[26] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys.
References
[27] R. A. Kendall, J. T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992,
[28] E. V. Brown, G. R. Granneman, J. Am. Chem. Soc. 1975, 97, 621.
[1] J. C. Mackie, M. B. Colket, P. F. Nelson, J. Phys. Chem. 1990, 94,
[2] J. H. Kiefer, Q. Zhang, R. D. Kern, J. Yao, B. Jursic, J. Phys. Chem. A