ACS Catalysis
Letter
formation of 1a, followed by 36 h heating at 150 °C for
subsequent formamide hydrogenation, 38% of 1a was observed
(3) (a) Goeppert, A.; Prakash, G. K. S.; Olah, G. A. Beyond Oil and
Gas: The Methanol Economy, 2nd ed.; Wiley-VCH: Weinheim,
Germany, 2009. (b) Olah, G. A.; Goeppert, A.; Prakash, G. K. S. J.
Org. Chem. 2009, 74, 487−498. (c) Olah, G. A.; Prakash, G. K. S.;
Goeppert, A. J. Am. Chem. Soc. 2011, 133, 12881−12898.
in the reaction mixture with only traces of CH OH formation.
3
We suggest that under these conditions (5 bar CO , 85 bar H ),
2
2
Finally, we decided to scale up the reaction with 10 mmol
benzylamine at a low C-1 loading (0.1 mol %) to observe the
extent of catalytic efficiency of C-1. The first reduction step to
formamide proceeded with 84% yield (TONN−CHO = 840) after
(d) Goeppert, A.; Czaun, M.; Jones, J.-P.; Prakash, G. K. S.; Olah,
G. A. Chem. Soc. Rev. 2014, 43, 7995−8048. (e) Natte, K.; Neumann,
H.; Beller, M.; Jagadeesh, R. V. Angew. Chem., Int. Ed. 2017, 56, 6384−
6
394.
(
4) (a) Waugh, K. C. Catal. Today 1992, 15, 51−75. (b) Behrens, M.;
Studt, F.; Kasatkin, I.; Ku hl, S.; Havecker, M.; Abild-pedersen, F.;
Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.; Tovar, M.; Fischer, R. W.;
Nørskov, J. K.; Schlogl, R. Science 2012, 336, 893−897.
̈
4
8 h at 70 bar pressure (H : CO = 1:1) and 110 °C. This is
̈
2
2
higher than the TON reported by Dubey et al. for formamide
formation of secondary diethylamine using a Mn complex with
̈
(5) (a) Zhang, Y.; Fei, J.; Yu, Y.; Zheng, X. Energy Convers. Manage.
2006, 47, 3360−3367. (b) Graciani, J.; Mudiyanselage, K.; Xu, F.;
Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.;
Hrbek, J.; Sanz, J. F.; Rodriguez, J. A. Science 2014, 345, 546−550.
6
,6′-dihydroxy-2,2′-bipyridine ligand. A TON
of 28 was
MeOH
observed for the subsequent hydrogenation of formed 2a at 85
bar H for 48 h. Thus, we conclude that the TON of C-1 for
2
(c) Liu, C.; Yang, B.; Tyo, E. C.; Seifert, S.; DeBartolo, J.; von
CO hydrogenation to CH OH is closer to the other reported
2
3
Issendorff, B.; Zapol, P.; Vajda, S.; Curtiss, L. A. J. Am. Chem. Soc.
2015, 137, 8676−8679.
first row transition-metal catalyst than the noble metal Ru-
16
based pincer catalysts.
In conclusion, CO was hydrogenated to CH OH in the
(6) (a) Tominaga, K.; Sasaki, Y.; Kawai, M.; Watanabe, T.; Saito, M.
2
3
J. Chem. Soc., Chem. Commun. 1993, No. No. 7, 629−631. (b) Huff, C.
presence of an air-stable Mn(I)-pincer catalyst. This sequential
CO hydrogenation in the same pot produced CH OH in good
A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122−18125.
2
3
(c) Wesselbaum, S.; Vom Stein, T.; Klankermayer, J.; Leitner, W.
yields with a maximum observed TON of 36. Our future efforts
in this context will be toward direct CO hydrogenation to
Angew. Chem., Int. Ed. 2012, 51, 7499−7502. (d) Wesselbaum, S.;
Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K. M.; Kothe, J.;
2
CH OH by base-metal catalysts at lower pressures and
Stein, T. v.; Englert, U.; Holscher, M.; Klankermayer, J.; Leitner, W.
3
̈
temperatures.
Chem. Sci. 2015, 6, 693−704. (e) Rezayee, N. M.; Huff, C. A.; Sanford,
M. S. J. Am. Chem. Soc. 2015, 137, 1028−1031. (f) Kothandaraman, J.;
Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. J. Am. Chem.
Soc. 2016, 138, 778−781.
ASSOCIATED CONTENT
Supporting Information
■
*
S
(
7) Indirect CH OH formation from HCOOH disproportionation:
3
(
a) Miller, A. J. M.; Heinekey, D. M.; Mayer, J. M.; Goldberg, K. I.
Angew. Chem., Int. Ed. 2013, 52, 3981−3984. (b) Savourey, S.; Lefevre,
G.; Berthet, J. C.; Thuery, P.; Genre, C.; Cantat, T. Angew. Chem., Int.
Ed. 2014, 53, 10466−10470. (c) Neary, M. C.; Parkin, G. Chem. Sci.
015, 6, 1859−1865.
8) (a) Li, Y.-N.; Ma, R.; He, L.-N.; Diao, Z.-F. Catal. Sci. Technol.
014, 4, 1498−1512. (b) Wang, W. H.; Himeda, Y.; Muckerman, J. T.;
̀
General information and experimental details (PDF)
́
2
AUTHOR INFORMATION
■
(
2
*
Manbeck, G. F.; Fujita, E. Chem. Rev. 2015, 115, 12936−12973.
(9) Schneidewind, J.; Adam, R.; Baumann, W.; Jackstell, R.; Beller, M.
Angew. Chem., Int. Ed. 2017, 56, 1890−1893.
ORCID
Notes
The authors declare no competing financial interest.
(10) (a) Zhou, B.; Chen, H.; Wang, C. J. Am. Chem. Soc. 2013, 135,
1
1
(
264−1267. (b) Liu, W.; Groves, J. T. Acc. Chem. Res. 2015, 48,
727−1735.
11) (a) Elangovan, S.; Topf, C.; Fischer, S.; Jiao, H.; Spannenberg,
ACKNOWLEDGMENTS
Support of our work by the Loker Hydrocarbon Research
Institute, USC is gratefully acknowledged.
■
A.; Baumann, W.; Ludwig, R.; Junge, K.; Beller, M. J. Am. Chem. Soc.
2016, 138, 8809−8814. (b) Tondreau, A. M.; Boncella, J. M.
Organometallics 2016, 35, 2049−2052. (c) Elangovan, S.; Neumann,
J.; Sortais, J.-B.; Junge, K.; Darcel, C.; Beller, M. Nat. Commun. 2016,
7, 12641. (d) Elangovan, S.; Garbe, M.; Jiao, H.; Spannenberg, A.;
Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 15364−15368.
REFERENCES
■
(
1) (a) Macdowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo,
́ ́
(e) Anderez-Fernandez, M.; Vogt, L. K.; Fischer, S.; Zhou, W.; Jiao,
A.; Jackson, G.; Adjiman, C. S.; Williams, C. K.; Shah, N.; Fennell, P.
Energy Environ. Sci. 2010, 3, 1645−1669. (b) House, K. Z.; Baclig, A.
C.; Ranjan, M.; van Nierop, E. A.; Wilcox, J.; Herzog, H. J. Proc. Natl.
Acad. Sci. U. S. A. 2011, 108, 20428−20433. (c) Goeppert, A.; Czaun,
M.; Prakash, G. K. S.; Olah, G. A. Energy Environ. Sci. 2012, 5, 7833−
853. (d) Yu, C.; Huang, C.; Tan, C. Aerosol Air Qual. Res. 2012, 12,
45−769. (e) Lackner, K. S.; Brennan, S.; Matter, J. M.; Park, A.-H. A.;
Wright, A.; van der Zwaan, B. Proc. Natl. Acad. Sci. U. S. A. 2012, 109,
H.; Garbe, M.; Elangovan, S.; Junge, K.; Junge, H.; Ludwig, R.; Beller,
M. Angew. Chem., Int. Ed. 2017, 56, 559−562. (f) Chakraborty, S.;
Gellrich, U.; Diskin-Posner, Y.; Leitus, G.; Avram, L.; Milstein, D.
Angew. Chem., Int. Ed. 2017, 56, 4229−4233. (g) van Putten, R.;
Uslamin, E. A.; Garbe, M.; Liu, C.; Gonzalez-de-Castro, A.; Lutz, M.;
Junge, K.; Hensen, E. J. M.; Beller, M.; Lefort, L.; Pidko, E. A. Angew.
Chem., Int. Ed. 2017, 56, 7531−7534. (h) Papa, V.; Cabrero-Antonino,
J. R.; Alberico, E.; Spanneberg, A.; Junge, K.; Junge, H.; Beller, M.
Chem. Sci. 2017, 8, 3576−3585. (i) Bauer, J. O.; Chakraborty, S.;
Milstein, D. ACS Catal. 2017, 7, 4462−4466. (j) Mastalir, M.;
Pittenauer, E.; Allmaier, G.; Kirchner, K. J. Am. Chem. Soc. 2017, 139,
8812−8815. (k) Bruneau-voisine, A.; Wang, D.; Dorcet, V.; Roisnel,
T.; Darcel, C.; Sortais, J. Org. Lett. 2017, 19, 3656−3659.
7
7
1
3156−13162. (f) Leung, D. Y. C.; Caramanna, G.; Maroto-valer, M.
M. Renewable Sustainable Energy Rev. 2014, 39, 426−443. (g) Sanz-
Perez, E. S.; Murdock, C. R.; Didas, S. A.; Jones, C. W. Chem. Rev.
016, 116, 11840−11876.
2) (a) Aresta, M.; Dibenedetto, A. Dalt. Trans. 2007, 2975−2992.
b) Centi, G.; Perathoner, S. Catal. Today 2009, 148, 191−205.
c) Dibenedetto, A.; Angelini, A.; Stufano, P. J. Chem. Technol.
́
2
(
(
(
(12) (a) Dubey, A.; Nencini, L.; Fayzullin, R. R.; Nervi, C.;
Khusnutdinova, J. R. ACS Catal. 2017, 7, 3864−3868. (b) Bertini, F.;
Biotechnol. 2014, 89, 334−353.
6
350
ACS Catal. 2017, 7, 6347−6351