Page 5 of 13
Journal of the American Chemical Society
Detailed experimental procedures, characterization data, and all
been computed at the DFT B3LYP level of theory using the 6ꢀ
1H and 13C NMR spectra for all new compounds. This material is
available free of charge via the Internet at htpp://pubs.acs.org
1
2
3
4
5
6
7
8
31G(d) basis set, and is estimated to be 46.8 kcal/mol. The SE
of the pꢀterphenyl system comprises 40.2 kcal/mol of the total
SE found in 34, the majority of which is localized on the cenꢀ
tral arene unit. At 28.4 kcal/mol, the SE of the paraꢀphenylene
ring is approximately 4.6 kcal/mol greater than that of the
average SE/paraꢀphenylene unit in [5]CPP – the most strained
CPP homolog to be prepared by chemical synthesis. The SE
of [4]CPP, which has yet to be synthesized, is predicted to be
144 kcal/mol,31 giving an average SE/paraꢀphenylene of 36
kcal/mol. Currently, we are pursuing the synthesis of a smaller
homolog of 34 as well as a macrocyclic precursor of [4]CPP.
Both of these targets will provide the ultimate tests of our
AUTHOR INFORMATION
Corresponding Author
* Corresponding Author: blm0022@auburn.edu
ACKNOWLEDGMENT
9
The authors are grateful to Auburn University and the Department
of Chemistry and Biochemistry for financial support of this work.
RM would like to thank the Auburn University Cellular and Moꢀ
lecular Biosciences (AUꢀCMB) program and NSF EPSCoR,
(NSFꢀEPSꢀ1158862, Grant G00006750) for a graduate fellowꢀ
ship.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Burgess
reage
ABBREVIATIONS
CNT, carbon nanotube; CPP, cycloparaphenylene; PTPP, (3,3")pꢀ
terphenylophane; MTPP, (3,3")mꢀterphenylophane; SE, strain
energy; DFT, density functional theory; RCM, ringꢀclosing meꢀ
tathesis; TLC, thin layer chromatography; TsOH, pꢀtoluene sulꢀ
fonic acid;
REFERENCES
(1) (a) JohanssonꢀSeechurn, C. C. C.; Kitching, M. O. Colacot, T. J.;
Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062ꢀ5085; b) Wu, X.
F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed.
2010, 49, 9047ꢀ9050.
(2) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem.
Rev. 2011, 111, 563ꢀ639; b) Kozlowski, M. C.; Morgan, B. J.; Linton,
E. C. Chem. Soc. Rev. 2009, 38, 3193ꢀ3207.
(3) Applications of Transition Metal Catalysis in Drug Discovery and
Development, Crawley, M. L.; Trost, B. M. 2012, John Wiley and
Sons, Hoboken, pp. 25ꢀ96.
(4) For a recent review article on this subject, see: Cherney, A. H.;
Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587ꢀ9652.
(5) Xu, S.; Kim, E. H. Wei, A.; Negishi, E.ꢀi. Sci. technol. Adv. Maꢀ
ter. 2014, 15, 44201ꢀ44223.
(6) MetalꢀCatalyzed CrossꢀCoupling Reactions, 2nd Edition, A. de
Meijere, F. Diderich, 2008, WileyꢀVCH, Weinheim.
(7) Gulder, T.; Baran, P. S. Nat. Prod. Rep. 2012, 29, 899−834.
(8) For recent examples see: Mysliwiec, D.; Kondratowicz, M.; Lis,
T.; Chmielewski, P.J.; Stępien, M. J. Am. Chem. Soc. 2015, 137,
1643ꢀ1649, as well as ref. 19 and 20
(9) Brown, C. J.; Farthing, A. C. Nature 1949, 164, 915ꢀ916
(10) Tsuji, T.; Okuyama, M.; Ohkita, M.; Kawai, H.; Suzuki, T. J.
Am. Chem. Soc. 2003, 125, 951ꢀ961.
(11) Garrido, L.; Zubia, E.; Ortega, M. J.; Salva, J. J. J. Org. Chem.
2003, 68, 293ꢀ299.
(12) For an extensive review on the subject, see: (b) Lewis, S. E.
Chem. Soc. Rev. 2015, 44, 2221−2304.
(13) Tobe, Y.; Kakiuchi, K.; Odaira, Y.; Hosaki, T.; Kai, Y.; Kasai,
N. J. Am. Chem. Soc. 1983, 105, 1376−1377.
(14) Kawai, H.; Suzuki, T.; Ohkita, M.; Tsuji, T. Angew. Chem. Int.
Ed. 1998, 37, 817ꢀ819.
(15) Jasti, R.; Bhattacharjee, J.; Neaton, J. B.; Bertozzi, C. R. J. Am.
Chem. Soc. 2008, 130, 17646−17647.
(16) Takaba, H.; Omachi, H.; Yamamoto, Y.; Bouffard, J.; Itami, K.
Angew. Chem. Int. Ed. 2009, 48, 6112ꢀ6116.
(17) Yamago, S.; Watanabe, Y.; Iwamoto, T. Angew. Chem. Int. Ed.
2010, 49, 757ꢀ759.
(18) Sisto, T. J.; Golder, M. R.; Hirst, E. R.; Jasti, R. J. Am. Chem.
Soc. 2011, 133, 15800ꢀ15802.
(19) Evans, P. J.; Darzi, E. R.; Jasti, R. Nat. Chem. 2014, 6, 404−408.
(20) Kayahara, E.; Patel, V. K.; Yamago S. J. Am. Chem. Soc. 2014,
136, 2284ꢀ2287.
ntꢀmediated aromatization protocol of macrocyclic cyclohexꢀ
2ꢀeneꢀ1,4ꢀdiols.
Figure 3. Xꢀray crystal structure of 1,5ꢀdioxa[5](3,3")pꢀ
terphenylophane (34)
CONCLUSION
In summary, a streamlined synthetic approach that involves
the conversion of acyclic dialdehydes to macrocyclic 1,4ꢀ
diketones has been developed. This fourꢀreaction process can
be conducted on a gramꢀscale, completed in just 7 hours, and
requires a single chromatographic separation to afford pure
1,4ꢀdiketones. The addition of vinylmagnesium chloride to
these macrocyclic 1,4ꢀdiketones, gave higher diastereoselecꢀ
tivities when smaller macrocyclic systems were employed (15
to 18ꢀmembered rings). The origin of this (macrocyclic) sizeꢀ
dependent diastereoselectivity, as well as its synthetic utility,
is currently under investigation in our laboratory. Finally, a
nonꢀprotic acidꢀmediated dehydrative aromatization reaction
of areneꢀbridged cyclohexꢀ2ꢀeneꢀ1,4ꢀdiol precursors has been
demonstrated to be a mild and powerful tool for the synthesis
of highly distorted paraꢀphenylene units that are part of polyꢀ
aryl systems, or benzenoid macrocycles. In the case of the
smallest homolog synthesized, over 37 kcal/mol of SE is genꢀ
erated upon elimination of two molecules of water (31 to 34,
Scheme 3b). The application of this reaction to a smaller homꢀ
olog of 34, the synthesis of small, functionalized CPPs, and
biaryl natural products containing bent benzene rings are unꢀ
derway in our laboratory. The results of these studies will be
reported in due course.
ASSOCIATED CONTENT
Supporting Information
ACS Paragon Plus Environment