D
Z. Lu et al.
Letter
Synlett
the presence of hydrosulfide and KSC(S)OEt, thereby pro-
viding a deeper understanding of the formation of chiral
auxiliaries from vicinal amino alcohols.
(7) (a) González, Á.; Aiguadé, J.; Urpí, F.; Vilarrasa, J. Tetrahedron
Lett. 1996, 37, 8949. (b) Ariza, X.; Garcia, J.; Romea, P.; Urpí, F.
Synthesis 2011, 2175. (c) Osorio-Lozada, A.; Olivo, H. F. Org. Lett.
2008, 10, 617.
(8) (a) Chen, N.; Jia, W.; Xu, J. Eur. J. Org. Chem. 2009, 5841.
(b) Delaunay, D.; Toupet, L.; Le Corre, M. J. Org. Chem. 1995, 60,
6604. (c) Fujita, M.; Miyashita, Y.; Amir, N.; Kawamoto, Y.;
Kanamori, K.; Fujisawa, K.; Okamoto, K.-i. Polyhedron 2005, 24,
1991. (d) Gálvez, E.; Romea, P.; Urpí, F. Org. Synth. 2009, 86, 70.
(9) Sudo, A.; Morioka, Y.; Koizumi, E.; Sanda, F.; Endo, T. Tetrahe-
dron Lett. 2003, 44, 7889.
Funding Information
Financial support was provided by the National Natural Science Foun-
dation of China (21572118 and 21572080) and Jiangsu University
(10JDG042 and 14JDG018).
N
ati
o
n
a
lNaturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
C
h
i
n
a
(2
1
5
7
2
1
1
8)Nati
o
n
a
lNaturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
C
h
i
n
a
(2
1
5
7
2
0
8
0)Ji
a
n
gsu
U
n
i
v
ersity(1
0
J
D
G
0
4
2)Ji
a
n
gsu
U
n
i
v
ersity(1
4
J
D
G
0
1
8)
(10) (a) Prat, D.; Hayler, J.; Wells, A. Green Chem. 2014, 16, 4546.
(b) Henderson, R. K.; Jiménez-González, C.; Constable, D. J. C.;
Alston, S. R.; Inglis, G. G. A.; Fisher, G.; Sherwood, J.; Binks, S. P.;
Curzons, A. D. Green Chem. 2011, 13, 854.
(11) Lu, Z.; Yang, Y.-Q.; Li, J.-H.; Wei, J.-N.; Wang, Y.-Z. Synth.
Commun. 2017, 47, 2215.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
(12) Tan, W.; Wei, J.; Jiang, X. Org. Lett. 2017, 19, 2166.
(13) (a) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc., Trans.
1915, 107, 1080. (b) Ingold, C. K. J. Chem. Soc., Trans. 1921, 119,
305. (c) Ingold, C. K.; Sako, S.; Thorpe, J. F. J. Chem. Soc., Trans.
1922, 121, 1177. (d) Zheng Y., Xu J.; Prog. Chem (Beijing, China);
2014, 26: 1471; DOI: 10.7536/PC140310 (e) O’Neil, M. J.;
Riesebeck, T.; Cornella, J. Angew. Chem. Int. Ed. 2018, 57, 9103.
(14) (a) Pawlowski, M.; Wojtasiewicz, K.; Maurin, J. K.; Leniewski, A.;
Blachut, D.; Czarmocki, Z. Heterocycles 2007, 71, 1743.
(b) Kaneti, J.; Kirby, A. J.; Koedjikov, A. H.; Pojarlieff, I. G. Org.
Biomol. Chem. 2004, 2, 1098. (c) Schmid, M. B.; Zeitler, K.;
Gschwind, R. M. J. Am. Chem. Soc. 2011, 133, 7065. (d) Chen, N.;
Huang, Z.; Zhou, C.; Xu, J. Tetrahedron 2011, 67, 7971. (e) Patil,
N. T.; Raut, V. S.; Kavthe, R. D.; Reddy, V. V. N.; Raju, P. V. K. Tet-
rahedron Lett. 2009, 50, 6576.
References and Notes
(1) For applications of 1,3-thiazolidine-2-thiones in asymmetric
synthesis, see: (a) Schleicher, K. D.; Jamison, T. F. Beilstein J. Org.
Chem. 2013, 9, 1533. (b) Hodgson, D. M.; Man, S. Chem. Eur. J.
2011, 17, 9731. (c) Wu, Y.; Shen, X.; Yang, Y.-Q.; Hu, Q.; Huang,
J.-H. J. Org. Chem. 2004, 69, 3857. (d) Kennington, S. C. D.; Romo,
J. M.; Romea, P.; Urpí, F. Org. Lett. 2016, 18, 3018.
(e) Skaanderup, P. R.; Jensen, T. Org. Lett. 2008, 10, 2821.
(f) Tungen, J. E.; Aursnes, M.; Hansen, T. V. Tetrahedron Lett.
2015, 56, 1843. (g) Velazquez, F.; Olivo, H. F. Curr. Org. Chem.
2002, 6, 303.
(2) Aitken, R. A.; Armstrong, D. P.; Galt, R. H. B.; Mesher, S. T. E.
J. Chem. Soc., Perkin Trans. 1 1997, 2139.
(3) Hwu, J. R.; Hsu, Y. C. Chem. Eur. J. 2011, 17, 4727.
(15) (4R)-4-Phenyl-1,3-thiazolidine-2-thione (2a) and (4R)-4-
Phenyl-1,3-oxazolidine-2-thione; Typical Procedure
Potassium ethylxanthate (802 mg, 5.0 mmol) was rapidly added
to a suspension of (2R)-2-amino-2-phenylethanol (1a; 137 mg,
1.0 mmol) in absolute EtOH (2.0 mL) in a 20 mL autoclave. The
autoclave was flushed with N2 for 5 min, then sealed and heated
in an oil bath at 100 °C for 24 h. It was then cooled to r.t. and the
mixture was transferred to a 50 mL round-bottomed flask and
concentrated under reduced pressure to remove the alcohol.
H2O (10 mL) was added to the slurry, and the mixture was
extracted with EtOAc (3 × 30 mL). The organic phases were
combined, washed with brine (30 mL), dried (Na2SO4), and con-
centrated to give a crude product that was purified by flash
chromatography [silica gel, EtOAc–PE (1:3)] to afford 2a and 3a.
2a8b
(4) (a) Yamada, S.; Katsumata, H. J. Org. Chem. 1999, 64, 9365.
(b) Yamada, S.; Misono, T.; Iwai, Y.; Masumizu, A.; Akiyama, Y.
J. Org. Chem. 2006, 71, 6872.
(5) For examples of 1,3-thiazolidine-2-thiones as sulfur donors,
see: (a) Kataoka, T.; Kinoshita, H.; Kinoshita, S.; Osamura, T.;
Watanabe, S.-i.; Iwamura, T.; Muraoka, O.; Tanabe, G. Angew.
Chem. Int. Ed. 2003, 42, 2889. (b) Kinoshita, H.; Osamura, T.;
Mizuno, K.; Kinoshita, S.; Iwamura, T.; Watanabe, S.-i.; Takaoka,
T.; Muraoka, O.; Tanabe, G. Chem. Eur. J. 2006, 12, 3896.
(c) Minor-Villar, L.; Tello-Aburto, R.; Olivo, H. F.; Fuentes, A.;
Romero-Ortega, M. Synlett 2012, 23, 2835.
(6) (a) Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K.
J. Org. Chem. 2001, 66, 894. (b) Prashad, M.; Shieh, W.-C.; Liu, Y.
Tetrahedron 2016, 72, 17. (c) Wu, Y.; Sun, Y.-P.; Yang, Y.-Q.; Hu,
Q.; Zhang, Q. J. Org. Chem. 2004, 69, 6141. (d) Nagao, Y.; Ikeda,
T.; Yagi, M.; Fujita, E. J. Am. Chem. Soc. 1982, 104, 2079.
(e) Nagao, Y.; Hagiwara, Y.; Kumagai, T.; Ochiai, M.; Inoue, T.;
Hashimoto, K.; Fujita, E. J. Org. Chem. 1986, 51, 2391. (f) Nagao,
Y.; Nagase, Y.; Kumagai, T.; Matsunaga, H.; Abe, T.; Shimada, O.;
Hayashi, T.; Inoue, Y. J. Org. Chem. 1992, 57, 4243. (g) Crimmins,
M. T.; She, J. Synlett 2004, 1371. (h) Evans, D. A.; Tedrow, J. S.;
Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2002, 124, 392.
(i) Evans, D. A.; Downey, C. W.; Shaw, J. T.; Tedrow, J. S. Org. Lett.
2002, 4, 1127. (j) Hsiao, C.-N.; Liu, L.; Miller, M. J. J. Org. Chem.
1987, 52, 2201. (k) Cosp, A.; Romea, P.; Talavera, P.; Urpí, F.;
Vilarrasa, J.; Font-Bardia, M.; Solans, X. Org. Lett. 2001, 3, 615.
(l) Patel, J.; Clavé, G.; Renard, P.-Y.; Franck, X. Angew. Chem. Int.
Ed. 2008, 47, 4224.
Off-white solid; yield: 160 mg (0.82 mmol, 82%); mp 123–
125 °C [Lit.8b 124–125 °C (aq EtOH)]; Rf = 0.3 (EtOAc–PE, 1:3),
22
[]D –205.8 (c 1.03, CHCl3) [Lit. –209.32 (c 0.35, CHCl3)]. IR
(KBr): 3132, 2923, 1489, 1452, 1258, 1050, 941, 759 cm–1 1H
.
NMR (400 MHz, CDCl3): = 7.62 (br s, 1 H), 7.46–7.36 (m, 5 H),
5.32 (t, J = 8.0 Hz, 1 H), 3.86 (dd, J = 11.2, 8.0 Hz, 1 H), 3.52 (dd, J
= 11.2, 8.0 Hz, 1 H). 13C NMR (101 MHz, CDCl3): = 201.6, 138.0,
129.4, 129.2, 126.3, 67.5, 41.6. ESI-MS: m/z = 196.0 [M + H]+.
3a8b,11
White solid; yield: 18 mg (0.10 mmol, 10%); mp 120.0–120.4 °C
(Lit.8b 121–122 °C); Rf = 0.3 (EtOAc–PE, 1:3); []D20 –78.5 (c 0.20,
CHCl3) [Lit.8b –79.3 (c 0.21, CHCl3)]. IR (KBr): 3436, 1525, 1170,
969, 701 cm–1. 1H NMR (400 MHz, CDCl3): = 7.95–7.50 (br s, 1
H), 7.45–7.36 (m, 3 H), 7.34–7.30 (m, 2 H), 5.12 (dd, J = 8.8, 7.6
Hz, 1 H), 5.00 (t, J = 8.8 Hz, 1 H), 4.49 (dd, J = 9.2, 7.2 Hz, 1 H). 13
C
NMR (101 MHz, CDCl3): = 189.6, 137.9, 129.2, 129.0, 126.2,
77.6, 60.1. ESI-MS: m/z = 178.0 [M–H]–.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–D