Journal of the American Chemical Society
Page 8 of 11
Tian, Y.; Chen, S.; Gu, Q.-S.; Lin, J.-S.; Liu, X.-Y. Amino-and
azidotrifluoromethylation of alkenes. Tetrahedron Lett. 2018, 59, 203.
3) For selected recent examples of intermolecular versions, see: (a)
trifluoromethylarylation of styrenes: enantioselective arylation of benzylic
radicals. J. Am. Chem. Soc. 2017, 139, 2904.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(
(7)
For selected reviews, see: (a) Quasdorf, K. W.; Overman, L. E.
Wang, F.; Wang, D.; Mu, X.; Chen, P.; Liu, G. Copper-catalyzed
intermolecular trifluoromethylarylation of alkenes: mutual activation of
Catalytic enantioselective synthesis of quaternary carbon stereocentres.
Nature 2014, 516, 181. (b) Liu, Y.; Han, S.-J.; Liu, W.-B.; Stoltz, B. M.
Catalytic enantioselective construction of quaternary stereocenters:
assembly of key building blocks for the synthesis of biologically active
molecules. Acc. Chem. Res. 2015, 48, 740.
3+
arylboronic acid and CF reagent. J. Am. Chem. Soc. 2014, 136, 10202.
(
b) Gu, J.-W.; Min, Q.-Q.; Yu, L.-C.; Zhang, X. Tandem difluoroalkylation‐
arylation of enamides catalyzed by nickel. Angew. Chem., Int. Ed. 2016,
5, 12270. (c) Ouyang, X.-H.; Song, R.-J.; Hu, M.; Yang, Y.; Li, J.-H. Silver‐
5
(8)
For a recent highlight on asymmetric radical reactions, see: (a)
mediated intermolecular 1,2‐alkylarylation of styrenes with α‐carbonyl alkyl
bromides and indoles. Angew. Chem., Int. Ed. 2016, 55, 3187. (d) Qin, T.;
Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B.
D.; Eastgate, M. D.; Baran, P. S. A general alkyl-alkyl cross-coupling
enabled by redox-active esters and alkylzinc reagents. Science 2016, 352,
801. (e) García-Domínguez, A.; Li, Z.; Nevado, C. Nickel-catalyzed
reductive dicarbofunctionalization of alkenes. J. Am. Chem. Soc. 2017,
Zhang, X.; You, S.-L. Removing the mask in catalytic asymmetric
diamination of alkenes. Chem 2017, 3, 919. Examples, see: (b) Lin, J.-S.;
Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. A dual-catalytic
strategy to direct asymmetric radical aminotrifluoromethylation of alkenes.
J. Am. Chem. Soc. 2016, 138, 9357. (c) Cheng, Y.-F.; Dong, X.-Y.; Gu, Q.-
S.; Yu, Z.-L.; Liu, X.-Y. Achiral pyridine ligand‐enabled enantioselective
radical oxytrifluoromethylation of alkenes with alcohols. Angew. Chem.,
Int. Ed. 2017, 56, 8883. (d) Lin, J.-S.; Wang, F.-L.; Dong, X.-Y.; He, W.-
W.; Yuan, Y.; Chen, S.; Liu, X.-Y. Catalytic asymmetric radical
aminoperfluoroalkylation and aminodifluoromethylation of alkenes to
versatile enantioenriched-fluoroalkyl amines. Nat. Comm. 2017, 8, 14841.
(e) Wang, F.-L.; Dong, X.-Y.; Lin, J.-S.; Zeng, Y.; Jiao, G.-Y.; Gu, Q.-S.;
Guo, X.-Q.; Ma, C.-L.; Liu, X.-Y. Catalytic asymmetric radical diamination
of alkenes. Chem 2017, 3, 979. (f) Li, X.-T.; Gu, Q.-S.; Dong, X.-Y.; Meng,
X.; Liu, X.-Y. A Copper catalyst with a cinchona‐alkaloid‐based
sulfonamide ligand for asymmetric radical oxytrifluoromethylation of
alkenyl oximes. Angew. Chem., Int. Ed. 2018, 57, 7668.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
39, 6835. (f) Cheng, Y.; Mück-Lichtenfeld, C.; Studer, A. Transition
metal-Free 1,2-carboboration of unactivated alkenes. J. Am. Chem. Soc.
018, 140, 6221.
4) For selected recent reviews, see: (a) Yan, M.; Lo, J. C.; Edwards,
2
(
J. T.; Baran, P. S. Radicals: reactive intermediates with translational
potential. J. Am. Chem. Soc. 2016, 138, 12692. (b) Studer, A.; Curran, D.
P. Catalysis of radical reactions: a radical chemistry perspective. Angew.
Chem., Int. Ed. 2015, 55, 58.
(
5)
For selected reviews, see: (a) Choi, J.; Fu, G. C. Transition
metal–catalyzed alkyl-alkyl bond formation: another dimension in cross-
coupling chemistry. Science 2017, 356, eaaf7230. (b) Fu, G. C. Transition-
metal catalysis of nucleophilic substitution reactions: a radical alternative to
SN1 and SN2 processes. ACS Cent. Sci. 2017, 3, 692. For representative
examples, see: (c) Arp, F. O.; Fu, G. C. Catalytic enantioselective negishi
reactions of racemic secondary benzylic halides. J. Am. Chem. Soc. 2005,
(9)
For selected examples, see: (a) Shchepinov, M. S.; Korshun, V.
A. Recent applications of bifunctional trityl groups. Chem. Soc. Rev. 2003,
32, 170. (b) Dothager, R. S.; Putt, K. S.; Allen, B. J.; Leslie, B. J.;
Nesterenko, V.; Hergenrother, P. J. Synthesis and identification of small
molecules that potently induce apoptosis in melanoma cells through G1
cell cycle arrest. J. Am. Chem. Soc. 2005, 127, 8686. (c) Nair, V.; Thomas,
S.; Mathew, S. C.; Abhilash, K. G. Recent advances in the chemistry of
triaryl- and triheteroarylmethanes. Tetrahedron 2006, 62, 6731. (d) Wong,
K.-T.; Chao, T.-C.; Chi, L.-C.; Chu, Y.-Y.; Balaiah, A.; Chiu, S.-F.; Liu, Y.-
H.; Wang, Y. Syntheses and structures of novel heteroarene-fused coplanar
π-conjugated chromophores. Org. Lett. 2006, 8, 5033. (e) Lucilla, V.;
Piero, A.; Michela, B.; Silvia, B.; Nicola, F.; Gabriella, M.; Maurizio, R.;
Santi, S. Synthesis and pharmacological profile of a series of 1-substituted-
2-carbonyl derivatives of diphenidol: novel M4 muscarinic receptor
antagonists. Med. Chem. 2008, 4, 121. (f) Palchaudhuri, R.; Nesterenko,
V.; Hergenrother, P. J. The complex role of the triphenylmethyl motif in
anticancer compounds. J. Am. Chem. Soc. 2008, 130, 10274. (g)
Skurydina, D. F.; Tolkachev, V. N.; Zenkina, D. I.; Nikolaeva, T. G.;
Tolkachev, O. N. Synthesis and cytotoxic activity of 3-triarylmethylindoles.
III. 3-[diphenyl(pyridyl)methyl]indoles. Pharm. Chem. J. 2008, 42, 443.
(h) Ameen, D.; Snape, T. J. Chiral 1,1-diaryl compounds as important
pharmacophores. MedChemComm 2013, 4, 893. (i) Mondal, S.; Panda, G.
Synthetic methodologies of achiral diarylmethanols, diaryl and
triarylmethanes (TRAMs) and medicinal properties of diaryl and
triarylmethanes-an overview. RSC Adv. 2014, 4, 28317. (j) Feng, G.; Fang,
Y.; Liu, J.; Geng, J.; Ding, D.; Liu, B. Multifunctional conjugated polymer
nanoparticles for image‐guided photodynamic and photothermal therapy.
Small 2017, 13, 1602807.
(10) (a) Shirakawa, S.; Koga, K.; Tokuda, T.; Yamamoto, K.;
Maruoka, K. Catalytic asymmetric synthesis of 3,3′‐diaryloxindoles as
triarylmethanes with a chiral all‐carbon quaternary center: phase‐transfer‐
catalyzed SNAr reaction. Angew. Chem., Int. Ed. 2014, 53, 6220. (b)
Wang, Z.; Ai, F.; Wang, Z.; Zhao, W.; Zhu, G.; Lin, Z.; Sun, J.
Organocatalytic asymmetric synthesis of 1,1-diarylethanes by transfer
hydrogenation. J. Am. Chem. Soc. 2015, 137, 383. (c) Wang, Z.; Wong, Y.
F.; Sun, J. Catalytic asymmetric 1,6‐conjugate addition of para‐quinone
methides: formation of all‐carbon quaternary stereocenters. Angew.
Chem., Int. Ed. 2015, 54, 13711. (d) Tsuchida, K.; Senda, Y.; Nakajima,
K.; Nishibayashi, Y. Construction of chiral tri‐ and tetra‐arylmethanes
bearing quaternary carbon centers: copper‐catalyzed enantioselective
propargylation of indoles with propargylic esters. Angew. Chem., Int. Ed.
2016, 55, 9728. (e) Zhao, W.; Wang, Z.; Chu, B.; Sun, J. Enantioselective
1
27, 10482. (d) Binder, J. T.; Cordier, C. J.; Fu, G. C. Catalytic
enantioselective cross-couplings of secondary alkyl electrophiles with
secondary alkylmetal nucleophiles: negishi reactions of racemic benzylic
bromides with achiral alkylzinc reagents. J. Am. Chem. Soc. 2012, 134,
1
7003. (e) Choi, J.; Fu, G. C. Catalytic asymmetric synthesis of secondary
nitriles via stereoconvergent negishi arylations and alkenylations of racemic
α-bromonitriles. J. Am. Chem. Soc. 2012, 134, 9102. (f) Cherney, A. H.;
Kadunce, N. T.; Reisman, S. E. Catalytic asymmetric reductive acyl cross-
coupling: synthesis of enantioenriched acyclic α,α-disubstituted ketones. J.
Am. Chem. Soc. 2013, 135, 7442. (g) Mao, J.; Liu, F.; Wang, M.; Wu, L.;
Zheng, B.; Liu, S.; Zhong, J.; Bian, Q.; Walsh, P. J. Cobalt–bisoxazoline-
catalyzed asymmetric kumada cross-coupling of racemic α-bromo esters
with aryl Grignard reagents. J. Am. Chem. Soc. 2014, 136, 17662. (h)
Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.; Kozlowski, M.
C. Nickel-catalyzed cross-coupling of photoredox-generated radicals:
uncovering a general manifold for stereoconvergence in nickel-catalyzed
cross-couplings. J. Am. Chem. Soc. 2015, 137, 4896. (i) Jin, M.; Adak, L.;
Nakamura, M. Iron-catalyzed enantioselective cross-coupling reactions of
α-chloroesters with aryl Grignard reagents. J. Am. Chem. Soc. 2015, 137,
7
128. (j) Liang, Y.; Fu, G. C. Stereoconvergent negishi arylations of
racemic secondary alkyl electrophiles: differentiating between a CF and an
3
alkyl group. J. Am. Chem. Soc. 2015, 137, 9523. (k) Kainz, Q. M.; Matier,
C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Asymmetric
copper-catalyzed C-N cross-couplings induced by visible light. Science
2
016, 351, 681. (l) Schmidt, J.; Choi, J.; Liu, A. T.; Slusarczyk, M.; Fu, G.
C. A general, modular method for the catalytic asymmetric synthesis of
alkylboronate esters. Science 2016, 354, 1265. (m) Zhang, W.; Wang, F.;
McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Enantioselective
cyanation of benzylic C–H bonds via copper-catalyzed radical relay.
Science 2016, 353, 1014.
(6)
Enantioselective
cyanotrifluoromethylation of alkenes via radical process. J. Am. Chem. Soc.
016, 138, 15547. (b) Sha, W.; Zhu, Y.; Mei, H.; Han, J.; Soloshonok, V.
(a) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G.
copper-catalyzed intermolecular
2
A.; Pan, Y. Catalytic enantioselective cyano‐trifluoromethylation of
styrenes. ChemistrySelect 2017, 2, 1129. (c) Wu, L.; Wang, F.; Wan, X.;
Wang, D.; Chen, P.; Liu, G. Asymmetric Cu-catalyzed intermolecular
ACS Paragon Plus Environment