10.1002/anie.201900993
Angewandte Chemie International Edition
COMMUNICATION
sides of the double-stranded RNA, showed a higher silencing
effect than 5LR-a. Therefore, we concluded that 5LR-b was the
optimal molecular design. The stability of 5LR-b in serum was
evaluated (Figs. 5a, b). After 30 min, the canonical siRNA (NR)
had completely disappeared, whereas 72% of 5LR-b remained.
Since degradation of siRNA in serum is one of major clearance
pathways,[19] this result indicated that LD modification would like
to be beneficial for in vivo applications of siRNA also in terms of
biostability. Compared with classical nanoparticle system (e.g.
liposomes), the stabilization effect might be weaker, but still
many advantages such as efficient cytosolic delivery, low toxicity,
and defined molecular composition would surpass this inferiority.
Scientific Research on Innovative Areas 2707 Middle Molecular
Strategy [18H04398 to H.A] from MEXT, and also by the Otsuka
Toshimi Scholarship Foundation to Z. S. Victoria Muir, PhD,
this manuscript.
Keywords: cellular uptake • antisense • siRNA • cytosolic
delivery • disulfide
[1]
(a) J. C. Burnett, J. J. Rossi, Chemistry & Biology 2012, 19, 60-71; (b)
A. A. Farooqi, Z. U. Rehman, J. Muntane, Oncotargets and Therapy
2014, 7, 2035-2042; (c) V. K. Sharma, P. Rungta, A. K. Prasad, RSC
Advances 2014, 4, 16618-16631; (d) G. Ozcan, B. Ozpolat, R. L.
Coleman, A. K. Sood, G. Lopez-Berestein, Advanced Drug Delivery
Reviews 2015, 87, 108-119; (e) A. Wittrup, J. Lieberman, Nature
Reviews Genetics 2015, 16, 543-552; (f) A. R. MacLeod, S. T. Crooke,
Journal of Clinical Pharmacology 2017, 57, S43-S59.
[2]
[3]
[4]
S. F. Dowdy, Nature Biotechnology 2017, 35, 222-229.
R. L. Juliano, Nucleic Acids Research 2016, 44, 6518-6548.
(a) K. Buyens, S. C. De Smedt, K. Braeckmans, J. Demeester, L.
Peeters, L. A. van Grunsven, X. d. M. du Jeu, R. Sawant, V. Torchilin,
K. Farkasova, M. Ogris, N. N. Sanders, Journal of Controlled Release
2012, 158, 362-370; (b) K. K. Ewert, A. Zidovska, A. Ahmad, N. F.
Bouxsein, H. M. Evans, C. S. McAllister, C. E. Samuel, C. R. Safinya,
Topics in Current Chemistry 2010, 296, 191-226; (c) Q. Lin, J. Chen, Z.
Zhang, G. Zheng, Nanomedicine 2014, 9, 105-120; (d) H. Y. Xue, P.
Guo, W.-C. Wen, H. L. Wong, Current Pharmaceutical Design 2015, 21,
3140-3147.
Figure . Stability of 5LR-b. a Non-denaturing PAGE analysis of the digestion
reaction with 10% human serum at different incubation times. b Band intensity
analysis of a
Finally, siRNA targeting the endogenous gene ApoB
(Apolipoprotein B) was designed and the RNAi effect was
evaluated (Figs. 4f-h).[20] Inhibition of ApoB expression lowers
the levels of low-density lipoprotein (LDL), enabling the
treatment of familial hyper-cholesterolemia. siRNA (5LR-ApoB)
was designed by introducing five repeats of LD units at the 3’
end of the guide strand and the 5’ end of the passenger strand
of the siRNA (Fig. 2b). The expression level of ApoB mRNA was
quantitatively analyzed using real-time PCR after the
transfection. When 100-nM siRNA was used, 5LR-ApoB
showed an inhibitory effect of 70% or greater, which was
comparable to that of lipofection-mediated siRNA. In addition,
comparable silencing effect for ApoB was confirmed by
Western-blotting assays (Figs. 4g, h).
In summary, we have successfully developed a new method for
universally enhancing the cellular uptake of ONs. The key
disulfide moieties can be introduced easily based on
phosphoramidite chemistry at any position in the ONs with the
desired number of repeats, which widens the range of the
molecular design. The disulfide-modified ONs were efficiently
distributed in the cytoplasm, where the target mRNA molecules
exist, within 10 min, and showed silencing effects superior or
comparable to those of lipofection-mediated ONs, notably with
no cytotoxicity. Additionally, our new method circumvents critical
problems associated with the conventional methods for cellular
uptake enhancement and thus should be suitable for clinical
applications. Further studies of applications in vivo are underway
in our group.
[5]
F. Sakurai, R. Inoue, Y. Nishino, A. Okuda, O. Matsumoto, T. Taga, F.
Yamashita, Y. Takakura, M. Hashida, Journal of Controlled Release, :
2000, 66, 255-269.
[6]
[7]
J. O. Radler, I. Koltover, T. Salditt, C. R. Safinya, Science 1997, 275,
810-814.
(a) M. Gooding, L. P. Browne, F. M. Quinteiro, D. L. Selwood, Chemical
Biology & Drug Design 2012, 80, 787-809; (b) H. Margus, K. Padari, M.
Pooga, Molecular Therapy 2012, 20, 525-533; (c) M. Pooga, U.
Soomets, M. Hallbrink, A. Valkna, K. Saar, K. Rezaei, U. Kahl, J. X.
Hao, X. J. Xu, Z. Wiesenfeld-Hallin, T. Hokfelt, T. Bartfai, U. Langel,
Nature biotechnology 1998, 16, 857-861; (d) J. J. Turner, A. A.
Arzumanov, M. J. Gait, Nucleic Acids Research 2005, 33, 27-42; (e) J.
J. Turner, G. D. Ivanova, B. Verbeure, D. Williams, A. A. Arzumanov, S.
Abes, B. Lebleu, M. J. Gait, Nucleic Acids Research 2005, 33, 6837-
6849; (f) N. Bendifallah, F. W. Rasmussen, V. Zachar, P. Ebbesen, P.
E. Nielsen, U. Koppelhus, Bioconjugate Chemistry 2006, 17, 750-758.
K. Saar, M. Lindgren, M. Hansen, E. Eiríksdóttir, Y. Jiang, K.
Rosenthal-Aizman, M. Sassian, Ü. Langel, Analytical Biochemistry
2005, 345, 55-65.
[8]
[9]
B. R. Meade, S. F. Dowdy, Advanced Drug Delivery Reviews 2007, 59,
134-140.
[10] (a) M. DiFiglia, M. Sena-Esteves, K. Chase, E. Sapp, E. Pfister, M.
Sass, J. Yoder, P. Reeves, R. K. Pandey, K. G. Rajeev, M. Manoharan,
D. W. Y. Sah, P. D. Zamore, N. Aronin, Proceedings of the National
Academy of Sciences 2007, 104, 17204-17209; (b) J. Soutschek, A.
Akinc, B. Bramlage, K. Charisse, R. Constien, M. Donoghue, S.
Elbashir, A. Geick, P. Hadwiger, J. Harborth, M. John, V. Kesavan, G.
Lavine, R. K. Pandey, T. Racie, K. G. Rajeev, I. Röhl, I. Toudjarska, G.
Wang, S. Wuschko, D. Bumcrot, V. Koteliansky, S. Limmer, M.
Manoharan, H.-P. Vornlocher, Nature 2004, 432, 173; (c) C. Wolfrum, S.
Shi, K. N. Jayaprakash, M. Jayaraman, G. Wang, R. K. Pandey, K. G.
Rajeev, T. Nakayama, K. Charrise, E. M. Ndungo, T. Zimmermann, V.
Koteliansky, M. Manoharan, M. Stoffel, Nature Biotechnology 2007, 25,
1149.
Acknowledgements
[11] R. L. Juliano, Nucleic Acids Research 2016, 44, 6518-6548.
[12] (a) Y. Huang, Molecular Therapy. Nucleic Acids 2017, 6, 116-132; (b) S.
Matsuda, K. Keiser, J. K. Nair, K. Charisse, R. M. Manoharan, P.
Kretschmer, C. G. Peng, A. V. Kel’in, P. Kandasamy, J. L. S.
Willoughby, A. Liebow, W. Querbes, K. Yucius, T. Nguyen, S. Milstein,
This work was supported by CREST [JPMJCR18S1], Japan
Agency of Science and Technology (JST), and Japan Society for
the Promotion of Science (JSPS) [Grant-in-Aid for Scientific
Research (B), 16KT0052 to H.A., 25282240 to H.A.] and
4
This article is protected by copyright. All rights reserved.