relatively low distribution coefficients observed in nitrate media
(Fig. 3) as the 1 : 1 complex of 5 with Am(III) would be expected
to be considerably less hydrophobic than the corresponding 1 : 2
complex.
Better agreement between the experimental and the calculated
paramagnetic shifts could probably be obtained by orienting
differently the magnetic susceptibility axes. However, the uncer-
tainties in the assignment of the NMR resonances and on the
exact orientation of the magnetic susceptibility tensor in a low
symmetry structure would remain and efforts in that direction
would not be very fruitful. At this stage, one can only say that the
solution and solid state structures of Yb(5)3+ are probably close.
2 C. Madic, M. J. Hudson, J.-O. Liljenzin, J.-P. Glatz, R. Nannicini, A.
Facchini, Z. Kolarik and R. Odoj, Prog. Nucl. Energy, 2002, 40, 523–
526; C. Hill, D. Guillaneux, L. Berthon and C. Madic, J. Nucl. Sci.
Technol., 2002, (Sup. 3), 309–312.
3 J. Magill, V. Berthou, D. Haas, J. Galy, R. Schenkel, H.-W. Wiese, G.
Heusener, J. Tommasi and G. Youinou, Nuclear Energy, 2003, 42, 263–
277; International Atomic Energy Agency, Technical Reports Series,
ISSN 0074-1914 no. 435, Vienna, Austria, 2004.
4 C. Madic, B. Boullis, P. Baron, F. Testard, M. J. Hudson, J-O. Liljenzin,
B. Christiansen, M. Ferrando, A. Facchini, A. Geist, G. Modolo, A. G.
Espartero and J. De Mendoza, J. Alloys Compd., 2007, 444–445, 23–27;
C. Ekberg, A. Fermvik, T. Retegan, G. Skarnemark, M. R. S. Foreman,
M. J. Hudson, S. Englund and M. Nilsson, Radiochim. Acta, 2008, 96,
225–233; Z. Kolarik, Chem. Rev., 2008, 108, 4208–4252.
5 C. Boucher, M. G. B. Drew, P. Giddings, L. M. Harwood, M. J. Hudson,
P. B. Iveson and C. Madic, Inorg. Chem. Commun., 2002, 5, 596–599;
M. G. B. Drew, C. Hill, M. J. Hudson, P. B. Iveson, C. Madic and
T. G. A. Youngs, Dalton Trans., 2004, 244–251.
6 M. G. B. Drew, M. R. S. J. Foreman, C. Hill, M. J. Hudson and
C. Madic, Inorg. Chem. Commun., 2005, 8, 239–241; M. Nilsson, C.
Ekberg, M. Foreman, M. Hudson, J-O. Liljenzin, G. Modolo and G.
Skarnemark, Solvent Extr. Ion Exch., 2006, 24, 823–843; M. R. S.
Foreman, M. J. Hudson, M. G. B. Drew, C. Hill and C. Madic, Dalton
Trans., 2006, 1645–1653.
7 A. Geist, C. Hill, G. Modolo, M. R. St, J. Foreman, M. Weigl, K.
Gompper and M. J. Hudson, Solvent Extr. Ion Exch., 2006, 24, 463–
483.
Conclusions
In conclusion, we have synthesized the first example of a (1,2,4-
triazin-3-yl)-2,2¢:6¢,2¢¢-terpyridine ligand and its solvent extraction
chemistry has been examined. Low binding affinities for Am(III)
but good selectivities for Am(III) over Eu(III) are observed in
n-octanol in the absence of a phase-modifier. The addition of
2-bromohexanoic acid increases the distribution coefficient at
low acidities. The stoichiometries and solution structures of the
complexes with Gd(III), Eu(III) and Yb(III) have been determined
by nuclear magnetic relaxation dispersion titrations, 1D and 2D
NMR techniques and mass spectrometry. In the presence of
perchlorate ions the ligand forms highly crowded 1 : 2 complexes
where the aliphatic substituents are conformationally immobile
on the NMR timescale (250–400 MHz). The solution structure
of the 1 : 2 complex of 5 with Yb(ClO4)3 has been deduced from
the relative magnitude of the induced paramagnetic shifts. The
complex is a mononuclear double helicate where the metal adopts
a bicapped square antiprism coordination geometry. In contrast,
in the presence of nitrate ions the ligand forms less-crowded 1 : 1
complexes where the aliphatic substituents are conformationally
mobile on the NMR time scale. The nitrate ions compete
effectively with the ligand for coordination sites on the metal
leading to poorly-extracted complexes of low hydrophobicity.
A mononuclear helical 1 : 1 complex is formed between 5 and
Y(ClO4)3 and its X-ray structure was determined. The Pd(II)
complex of 5 has been synthesized and its NMR and mass spectra
are consistent with a dinuclear double-helical structure.
8 D. Magnusson, B. Christiansen, M. R. S. Foreman, A. Geist, J.-P.
Glatz, R. Malmbeck, G. Modolo, D. Serrano-Purroy and C. Sorel,
Solvent Extr. Ion Exch., 2009, 27, 97–106.
9 E. C. Constable, Adv. Inorg. Chem., 1986, 30, 69–121; E. C. Constable,
Tetrahedron, 1992, 48, 10013–10059; E. C. Constable, in Comprehensive
Supramolecular Chemistry, ed. J. P. Sauvage, and M. W. Hosseini,
Elsevier, Oxford, 1996, vol. 9, pp. 213-252; C. Piguet, G. Bernardinelli
and G. Hopfgartner, Chem. Rev., 1997, 97, 2005–2062; M. Albrecht,
Chem. Rev., 2001, 101, 3457–3498; R. P. Thummel, in Comprehensive
Coordination Chemistry II, ed. J. A. McCleverty and T. J. Meyer,
Elsevier, Oxford, 2004, vol. 1, pp. 41-53; R.-A. Fallahpour, Curr. Org.
Synth., 2006, 3, 19–39.
10 E. C. Constable, Prog. Inorg. Chem., 1994, 42, 67–138; E. C. Constable,
Pure Appl. Chem., 1996, 68, 253–260; R. Ziessel, Synthesis, 1999, 1839–
1865; E. C. Constable and C. E. Housecroft, Chimia, 1999, 53, 187–191;
R.-A. Fallahpour, Chimia, 1999, 53, 195; R. Ziessel, Coord. Chem. Rev.,
2001, 216–217, 195–223; E. C. Constable, V. Chaurin, C. E. Housecroft
and A. Wirth, Chimia, 2005, 59, 832–835.
11 P. Jones, G. B. Villeneuve, C. Fei, J. DeMarte, A. J. Haggarty, K. T. Nwe,
D. A. Martin, A-M. Lebuis, J. M. Finkelstein, B. J. Gour-Salin, T. H.
Chan and B. R. Leyland-Jones, J. Med. Chem., 1998, 41, 3062–3077;
K. Kikuchi, S. Hibi, H. Yoshimura, N. Tokuhara, K. Tai, T. Hida, T.
Yamauchi and M. Nagai, J. Med. Chem., 2000, 43, 409–419.
12 K. Ru¨hlmann, Synthesis, 1971, 236–250.
13 J. Strating, S. Reiffers and H. Wynberg, Synthesis, 1971, 209–211; J.
Strating, S. Reiffers and H. Wynberg, Synthesis, 1971, 211–212.
14 D. D. Coffman, E. L. Jenner and R. D. Lipscomb, J. Am. Chem. Soc.,
1958, 80, 2864–2874; D. H. Bremner, S. R. Mitchell and H. Staines,
Ultrason. Sonochem., 1996, 3, 47–52; D. H. Bremner, A. E. Burgess and
F-B. Li, Green Chem., 2001, 3, 126–130.
Acknowledgements
15 V-M. Mukkala, C. Sund, M. Kwiatkowski, P. Pasanen, M. Ho¨gberg,
J. Kankare and H. Takalo, Helv. Chim. Acta, 1992, 75, 1621–1632; C.
Galaup, J-M. Couchet, S. Bedel, P. Tisne`s and C. Picard, J. Org. Chem.,
2005, 70, 2274–2284; J. M. Veauthier, C. N. Carlson, G. E. Collis, J. L.
Kiplinger and K. D. John, Synthesis, 2005, 2683–2686.
16 R. P. Thummel and Y. Jahng, J. Org. Chem., 1985, 50, 3635–
3636.
17 W. K. Fife, J. Org. Chem., 1983, 48, 1375–1377.
We thank the Nuclear Fission Safety Program of the European
Union for support under the ACSEPT (FP7-CP-2007-211267)
contract. We also thank the EPSRC and the University of Reading
for funds for the X-Calibur system. The Belgian team also
acknowledge the financial support of the Fonds de la Recherche
Scientifique (FNRS) of Belgium.
18 CrysAlis, (2006) Oxford Diffraction Ltd., Abingdon, UK.
19 G. M. Sheldrick, Acta. Crystallogr., 2008, A64, 112–122.
20 ABSPACK program (2007), Oxford Diffraction Ltd., Abingdon, UK.
21 F. H. Case, J. Org. Chem., 1965, 30, 931–933.
22 Z. Kolarik, U. Mullich and F. Gassner, Solvent Extr. Ion Exch., 1999,
17, 23–32.
23 D. Serrano-Purroy, P. Baron, B. Christiansen, R. Malmbeck, C. Sorel
and J.-P. Glatz, Radiochim. Acta, 2005, 93, 351–355.
24 E. C. Constable, S. M. Elder, J. Healy, M. D. Ward and D. A. Tocher,
J. Am. Chem. Soc., 1990, 112, 4590–4592.
References
1 A. Facchini, L. Amato, G. Modolo, R. Nannicini, C. Madic and P.
Baron, Sep. Sci. Technol., 2000, 35, 1055–1068; D. Serrano-Purroy, B.
Christiansen, J.-P. Glatz, R. Malmbeck and G. Modolo, Radiochim.
Acta, 2005, 93, 357–361; G. Modolo, H. Vijgen, D. Serrano-Purroy, B.
Christiansen, R. Malmbeck, C. Sorel and P. Baron, Sep. Sci. Technol.,
2007, 42, 439–452.
This journal is
The Royal Society of Chemistry 2010
Dalton Trans., 2010, 39, 5172–5182 | 5181
©