Paper
NJC
38, 1563–1589; (i) Handbook of Liquid Crystals; Volume 5:
Non-Conventional Liquid Crystals, ed. J. W. Goodby, P. J.
Collings, T. Kato, C. Tschierske, H. Gleeson and P. Peter
Raynes, Wiley-VCH, Weinheim, 2nd edn, 2014.
but also on the lengths of the terminal tails. The dimers with
odd-parity spacer show considerably lower N*-I (clearing) tran-
sition (isotropization) temperature as compared to their even-
membered counterparts; within the series the isotropization
temperature generally decreases with the increase in terminal
tail length. The even-members commonly show SmA and N*
phases; some of them, depending upon the lengths of the
spacer and terminal chain, display TGB, SmC* and TGBC*
phases additionally. Remarkably, some of these dimers stabilize
highly frustrated LC phases such as TGB and TGBC* over a wide
thermal width. On the other hand, the dimers with an odd-
numbered spacer commonly show the blue phase (BPI/II/III) and
N* phases, while some of the dimers (higher members) also
stabilize an unfamiliar tilted smectic phase; this observation is
in accordance with the general important finding that BPs are
stabilized by optically active, non-symmetric dimers comprising
an odd-membered spacer, and not by their counterpart dimeric
liquid crystals possessing an even spacer. Chiroptical properties
of the chiral nematic phase of the samples were investigated by
CD measurements; this study reveals that the handedness of
cholesteric superstructure depends on the parity of the spacer. In
essence, the study clearly illustrates the complex interplay of the
different molecular sub-units of the dimers in stabilizing meso-
phases such as blue, chiral nematic, twist grain boundary,
smectic A and chiral smectic C phases. Thus, the cholesterol-
based dimers described here are early examples of what could be
a vast family of materials that may secure a vital position in both
basic and applied research.
2 R. J. Mandle, Soft Matter, 2016, 12, 7883–7901.
3 (a) C. T. Imrie, in Structure and Bonding - Liquid crystals, II,
ed. D. M. P. Mingos, Springer-Verlag, 1999, p. 149; (b) C. T.
Imrie and G. R. Luckhurst, in Handbook of liquid crystals, ed.
D. Demus, J. W. Goodby, G. W. Gray, H.-W. Spiess and
V. Vill, Weiley-VCH, Germany, 1998, vol. 2B, part – III,
p. 799; (c) S. K. Pal and S. Kumar, Liquid Crystal Dimers,
Cambridge University Press, UK, 2017.
4 C. V. Yelamaggad, G. Shanker, U. S. Hiremath and S. K.
Prasad, J. Mater. Chem., 2008, 18, 2927–2949.
5 (a) Chirality in Liquid Crystals, ed. H.-S. Kitzerow and
C. Bahr, Springer-Verlag, New York, 2001; (b) Materials
Chiralty: Volume 24 of Topics in Stereochemistry, ed. M. M.
Green, R. J. M. Nolte and E. W. Meijer, John Wiley & Sons
Inc., New Jersey, 2003; (c) I. Dierking, Symmetry, 2014, 6,
444–472.
6 F. Hardouin, M. F. Achard, J.-I. Jin, J.-W. Shin and Y.-K. Yun,
J. Phys. II, 1994, 4, 627–643.
7 (a) F. Hardouin, M. F. Achard, J.-I. Jin and Y. K. Yun, J. Phys.
II, 1995, 5, 927–935; (b) F. Hardouin, M. F. Achard, J.-I. Jin,
Y. K. Yun and S.-J. Chung, Eur. Phys. J. B, 1998, 1, 47–56;
(c) C. V. Yelamaggad, A. Srikrishna, D. S. Shankar Rao and
S. K. Prasad, Liq. Cryst., 1999, 26, 1547–1554; (d) J.-W. Lee,
Y. Park, J.-I. Jin, M. F. Achard and F. Hardouin, J. Mater.
Chem., 2003, 13, 1367–1372; (e) Y. Tian, X. Xu, Y. Zhao,
X. Tang and T. Li, Liq. Cryst., 1997, 22, 87–96; ( f ) K. C.
Majumdar, P. K. Shyam, D. S. Shankar Rao and S. K. Prasad,
J. Mater. Chem., 2011, 21, 556–561.
Conflicts of interest
There are no conflicts to declare.
8 (a) C. V. Yelamaggad, Uma S. Hiremath and D. S. Shankar
Rao, Liq. Cryst., 2001, 28, 351–355; (b) C. V. Yelamaggad,
U. S. Hiremath, S. Anitha Nagamani, D. S. Shankar Rao and
S. K. Pasad, Liq. Cryst., 2003, 30, 681–690; (c) K. C. Majumdar
and P. K. Shyam, Mol. Cryst. Liq. Cryst., 2010, 528, 3–9;
(d) K. C. Majumdar, P. K. Shyam, D. S. Shankar Rao and
S. K. Prasad, Liq. Cryst., 2012, 39, 1117–1123; (e) D. D. Sarkar,
R. Deb, N. Chakraborty, G. Mohiuddin, R. Kanti Nath and
N. V. S. Rao, Liq. Cryst., 2013, 40, 468–481; ( f ) M. Kumar,
T. Padmini and K. Ponnuvel, J. Saudi Chem. Soc., 2017, 21,
S322–S328.
Acknowledgements
CVY sincerely thanks the Department of Science and Technology
(DST), New Delhi, Govt. of India, for financial support through
SERB project No. EMR/2017/S1/000153.
References
1 (a) C. T. Imrie and P. A. Henderson, Curr. Opin. Colloid Interface
Sci., 2002, 7, 298–311; (b) I. M. Saez and J. W. Goodby, J. Mater.
Chem., 2005, 15, 26–40; (c) T. Kato, N. Mizoshita and
K. Kishimoto, Angew. Chem., Int. Ed., 2006, 45, 38–68;
(d) C. T. Imrie and P. A. Henderson, Chem. Soc. Rev., 2007,
36, 2096–2124; (e) J. W. Goodby, I. M. Saez, S. J. Cowling,
V. Gortz, M. Draper, A. W. Hall, S. Sia, G. Cosquer, S.-E. Lee
and E. P. Raynes, Angew. Chem., Int. Ed., 2008, 47,
2754–2787; ( f ) A. Yoshizawa, J. Mater. Chem., 2008, 18,
2877–2889; (g) J. W. Goodby, I. M. Saez, S. J. Cowling, J. S.
Gasowska, R. A. MacDonald, S. Sia, P. Watson, K. J. Toyne,
M. Hird, R. A. Lewis, S. E. Lee and V. Vaschenko, Liq. Cryst.,
2009, 36, 567–605; (h) A. S. Achalkumar, U. S. Hiremath,
D. S. Shankar Rao and C. V. Yelamaggad, Liq. Cryst., 2011,
9 T.-N. Chan, Z. Lu, W.-S. Yam, G.-Y. Yeap and C. T. Imrie, Liq.
Cryst., 2012, 39, 393–402.
10 C. V. Yelamaggad, M. Mathews, U. S. Hiremath, D. S. S. Rao
and S. K. Prasad, Tetrahedron Lett., 2005, 46, 2623–2626.
11 (a) N. Tamaoki, Y. Aoki, M. Moriyama and M. Kidowaki,
Chem. Mater., 2003, 15, 719–726; (b) V. Ajay Mallia and
N. Tamaoki, J. Mater. Chem., 2003, 13, 219–224; (c) V. Ajay
Mallia and N. Tamaoki, Chem. Mater., 2003, 15, 3237–3239;
(d) V. Ajay Mallia and N. Tamaoki, Chem. Commun., 2004,
2538–2539; (e) K.-N. Kim, E.-D. Do, Y.-W. Kwon and J.-I. Jin,
Liq. Cryst., 2005, 32, 229–237; ( f ) W.-K. Lee, K.-N. Kim,
M. F. Achard and J.-I. Jin, J. Mater. Chem., 2006, 16,
2289–2297; (g) C. Wu, Mater. Lett., 2007, 61, 1380–1383;
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019