Chemistry Letters Vol.33, No.3 (2004)
305
and 89% yields, respectively (Entries 1 and 2). This reaction pro-
ceeded indeed rapidly to finish within 105 second of irradiation.
The reactions of styrene oxide with aniline gave rise to the for-
mation of ꢀ-aminoalcohol derived from ꢁ-attack of aniline
(Entries 8-10). These high reactivity and selectivity are similar
to those observed in the case of strong Lewis acids.10a,b,11
Very recently, Cepanec has reported that the epoxide-open-
ing reaction with nitroaniline gave unsatisfactory result in spite
of the prolonged reaction time.5 In sharp contrast to this, our pro-
tocol promoted by microwave irradiation furnished the desired
ꢀ-aminoalcohol in a good yield even in the short reaction time
(<175 s) (Entry 7).
In conclusion, the present microwave-assisted procedure
provides an efficient and very simple methodology for the prep-
aration of 2-anilinoalkanols using Bi(OTf)3 or Bi(TFA)3 as very
cheap, low toxic, and oxygen and moisture tolerant catalysts in
very short reaction times. In addition, high selectivity described
in this report is another merit of this method.
Synthesis, 2003, 1387. b) I. Mohammadpoor-Baltork and A.
R. Khosropour, Monatsh. Chem., 133, 189 (2002). c) S.
Repichet, A. Zwick, L. Vendier, C. Le Roux, and J. Dubac,
Tetrahedron Lett., 43, 993 (2002). d) M. N. Leonard, L. C.
Wieland, and R. S. Mohan, Tetrahedron, 58, 8373 (2002).
13 I. Mohammadpoor-Baltork, A. R. Khosropour, H. Aliyan, J.
Chem. Res., Synop., 7, 780 (2001). and cited therein.
14 a) I. Mohammadpoor-Baltork and A. R. Khosropour,
Molecules, 6, 996 (2001). b) I. Mohammadpoor-Baltork
and A. R. Khosropour, Synth. Commun., 22, 3411 (2001).
15 R. S. Pottorf, N. K. Chadha, M. Katkevics, V. Ozola, E.
Suna, H. Ghane,T. Regberg, and M. R. Player, Tetrahedron
Lett., 44, 175 (2003).
16 Experimental Procedure: To a solution of epoxides (1 mmol)
and anilines (1 mmol) in CH3CN (2 mmol) was added Bi(O-
Tf)3 (0.02 mmol) or Bi(TFA)3 (0.05 mmol). The mixture was
irradiated with microwave oven for the appropriate time ac-
cording to Table. After completion of the reaction, as indi-
cated by TLC or GLC, the solvent was evaporated and wash-
ed with 0.5N HCl (25 mL). The mixture was extracted with
CH2Cl2 (3 ꢁ 10 mL) and the organic layer was dried with
Na2SO4. The solvent was evaporated and the crude product
purified by plate or column chromatography on a silica gel to
afford the pure ꢀ-aminoalcohols in 75–96% yields. Spectro-
scopic data for compounds: 2: trans-2-(4-Methylanilino)cy-
clohexan-1-ol: Viscous liquid, IR (KBr, cmꢂ1) 3618–3104
All of the products refer to pure 2-anilinoalkanols. The ap-
paratus used for these reactions was a Samsung domestic micro-
wave oven (900 W) without any modification.
We are thankful to the Razi University Research Council for
partial support of this work.
References and Notes
1
1
2
G. K. Jnaneshwara, V. H. Deshpande, M. Lalithambika, T.
Ravindranathan, and A. V. Bedekar, Tetrahedron Lett., 39,
459 (1998).
a) J. Takehara, S. Hashiguchi, A. Fujii, S. I. Inoue, T. Ikaria,
and R. Nayori, J. Chem. Soc., Chem. Commun., 1996, 233. b)
D. J. Ager, I. Prakash, and D. Schaad, Chem. Rev., 96, 835
(1996). c) C. Auvin-Guette, S. Rebuffat, Y. Prigent, and B.
Bodo, J. Am. Chem. Soc., 114, 2170 (1992).
(NH and OH), 1603, 1502, H NMR (CDCl3, 200 MHz) ꢂ
1.09 (m, 1H), 1.47 (m, 3H), 1.72 (m, 2H), 2.09 (m, 2H),
2.33 (s, 3H), 3.01–3.27 (ddd, 1H, J ¼ 11, 11, 6.2), 3.31–
3.53 (m, 1H), 3.57–4.22 (bs, 2H), 6.78–7.02 (m, 4H, Ar–
H), 13C NMR (CDCl3, 200 MHz) ꢂ 24.7, 25.4, 31.4, 31.8,
33.6, 60.9, 74.8, 115.2, 119.3, 129.8, 147.7, Analysis calcd.
for C13H19NO; C, 76.06; H, 9.33; N, 6.82. Found: C, 76.35;
H, 9.11; N, 6.61%. 11: 1-Anilino-3-(2-propenoxy)-2-propa-
nol: viscous liquid; IR (NaCl, cmꢂ1) 3510–3115 (NH and
3
4
5
6
H. E. Carter, F. J. Glick, W. P. Norris, and G. E. Phillips, J.
Biol. Chem., 170, 285 (1947).
J. S. Yadav, B. V. S. Reddy, A. K. Basak, and A. Venkat
Narsaiah, Tetrahedron Lett., 44, 1047 (2003).
1
OH), 3009, 1598, 1500, 1068, H NMR (CDCl3, 200 MHz)
ꢂ 3.15(dd, J ¼ 9:9; 10 Hz, 2H), 3.26 (dd, 5, 7 Hz, 2H), 3.52
(m, 2H), 3.81(bs, 1H), 4.08(d, J ¼ 9 Hz, 2H), 5.23 (d, J ¼
12 Hz, 2H), 5.98 (m, 1H), 6.62 (d, J ¼ 10 Hz, 2H), 7.15 (d,
10 Hz, 2H), 13C NMR (CDCl3, 200 MHz) ꢂ 47.4, 69.4,
72.8, 73.9, 113.9, 117.9, 118.5, 129.7, 134.7, 142.7, Analysis
calcd. for C12H17NO2; C, 69.54; H, 8.27; N, 6.76. Found: C,
69.30; H, 8.39; N, 6.68%. 12: 1-Anilino-2-octanol: viscous
liquid; IR (NaCl, cmꢂ1): 3598–3100 (NH and OH), 1592,
1495, 1H NMR (CDCl3, 200 MHz) ꢂ 0.92 (t, J ¼ 7 Hz,
3H), 1.24–1.86 (m, 10H), 3.21 (dd, J ¼ 10, 10 Hz, 2H),
3.32 (dd, J ¼ 8, 4 Hz, 1H), 3.91 (m, 1H), 6.68–7.35 (m,
5H), 13C NMR (CDCl3, 200 MHz) ꢂ 14.5, 23.0, 26.0, 29.8,
32.2, 35.5, 51.0, 70.7, 114.0, 118.7, 129.7, 151.6, Analysis
calcd. for C14H23NO; C, 75.97; H, 10.47; N, 6.33. Found:
C, 75.71; H, 10.66; N, 6.48%. 14: 1-Anilino-3-chloro-2-
propanol: viscous liquid; IR (NaCl cmꢂ1): 3504–3100 (NH
´
I. Cepanec, M. Litvic, H. Mikuldas, A. Bartolincic, and V.
Vinkovic, Tetrahedron, 59, 2435 (2003).
´
´
a) Y. Harrak and M. D. Pujol, Tetrahedron Lett., 43, 819
(2002). b) N. R. Swamy, G. Kondaji, and K. Nagaiah, Synth.
Commun., 32, 2307 (2002). c) T. Ollevier and G. Lavie-
Compin, Tetrahedron Lett., 43, 7891 (2002).
M. Curini, F. Epifano, M. C. Marcotullio, and O. Rosati, Eur.
J. Org. Chem., 2001, 4149.
S. Rampalli, S. S. Chandhari, and K. G. Akamanchi, Synthe-
sis, 2000, 78.
S. Chandrasekhar, T. Ramachandar, and S. Jaya Prakash,
Synthesis, 2000, 1817.
7
8
9
10 a) G. Sekar and V. K. Singh, J. Org. Chem., 64, 287 (1999).
b) M. Chini, P. Crotti, L. Favero, F. Macchia, and M.
Pinesch, Tetrahedron Lett., 35, 433 (1994). c) M. Meguro,
N. Asao, and Y. Yermamoto, J. Chem. Soc., Perkin Trans.
1, 1994, 2597. d) M. Fujiwara, M. Imada, A. Baba, and H.
Matsuda, Tetrahedron Lett., 30, 739 (1989).
1
and OH), 1594, 1497, 1090, H NMR (CDCl3, 200 MHz) ꢂ
3.24 (m, 2H), 3.45 (dd, J ¼ 10:1, 4.8 Hz, 1H), 3.72 (d, J ¼
8 Hz, 2H), 4.12 (m, 1H), 6.74 (m, 3H), 7.19 (m, 2H), 13C
NMR (CDCl3, 200 MHz) ꢂ 47.7, 48.1, 70.2, 113.9, 118.9,
129.9, 148.0, Analysis calcd. for C9H12 ClNO; C, 58.23;
H, 6.51; N, 7.54. Found: C, 58.02; H, 6.68; N, 7.69%.
11 J. Auge and F. Leroy, Tetrahedron Lett., 37, 7715 (1996).
12 a) J. V. Yadav, B. V. S. Reddy, P. N. Reddy, and M. S. Rao,
Published on the web (Advance View) February 14, 2004; DOI 10.1246/cl.2004.304