Journal of the American Chemical Society
Article
Intermediates in the Synthesis of Novel Indenole Derivatives via 1,5-
Cyclization Reactions of 5-Aryl-1-azapenta-1,4-dien-3-ones. Synthesis
Studies of the Nazarov Cyclization. 2. The Effect of β Silyl and β
Methyl Groups. J. Org. Chem. 1991, 56, 4444−4447. (c) Davis, R. L.;
Tantillo, D. J. Theoretical Studies on Pentadienyl Cation Electro-
cyclizations. Curr. Org. Chem. 2010, 14, 1561−1577. (d) Harmata,
M.; Schreiner, P. R.; Lee, D. R.; Kirchhoefer, P. L. Combined
Computational and Experimental Studies of the Mechanism and
Scope of the Retro-Nazarov Reaction. J. Am. Chem. Soc. 2004, 126,
2
008, 2008, 3397−3406. (e) Delot, M.; Carato, P.; Furman, C.;
Lemoine, A.; Lebegue, N.; Berthelot, P.; Yous, S. Synthesis of 1,11-
Dihydro-2H-[1,3]oxazolo[4′,5′:5,6]indeno[1,2-b]quinolin-2-ones
with Potential Topoisomerase I Inhibitory Activity. Synthesis 2009,
2
009, 3819−3822. (f) Saulnier, S.; Golovanov, A. A.; Ivanov, A. Y.;
Boyarskaya, I. A.; Vasilyev, A. V. Transformations of Conjugated
10954−10957. (e) Faza, O. N.; Lopez, C. S.; Alvarez, R.; de Lera, A.
́
Enynones in the Superacid CF SO H. Synthesis of Butadienyl
R. Regio-, Peri-, and Torquoselectivity in Hydroxy Heptatrienyl
Cation Electrocyclizations: the Iso/Homo-Nazarov Reaction. Chem. -
Eur. J. 2009, 15, 1944−1956. (g) Cavalli, A.; Masetti, M.; Recanatini,
M.; Prandi, C.; Guarna, A.; Occhiato, E. G. Density Functional
Studies on the Nazarov Reaction Involving Cyclic Systems. Chem. -
Eur. J. 2006, 12, 2836−2845. (h) Cavalli, A.; Pacetti, A.; Recanatini,
M.; Prandi, C.; Scarpi, D.; Occhiato, E. G. Predicting Reactivity and
Stereoselectivity in the Nazarov Reaction: A Combined Computa-
tional and Experimental Study. Chem. - Eur. J. 2008, 14, 9292−9304.
(i) Vaidya, T.; Manbeck, G. F.; Chen, S.; Frontier, A. J.; Eisenberg, R.
Divergent Reaction Pathways of a Cationic Intermediate: Rearrange-
ment and Cyclization of 2-Substituted Furyl and Benzofuryl Enones
Catalyzed by Iridium(III). J. Am. Chem. Soc. 2011, 133, 3300−3303.
(j) Raja, S.; Nakajima, M.; Rueping, M. Experimental and Computa-
tional Study of the Catalytic Asymmetric 4π-Electrocyclization of N-
Heterocycles. Angew. Chem., Int. Ed. 2015, 54, 2762−2765.
(k) Lebœuf, D.; Huang, J.; Gandon, V.; Frontier, A. J. Using Nazarov
Electrocyclization to Stage Chemoselective [1,2]-Migrations: Stereo-
selective Synthesis of Functionalized Cyclopentenones. Angew. Chem.,
Int. Ed. 2011, 50, 10981−10985. (l) Lebœuf, D.; Gandon, V.;
Ciesielski, J.; Frontier, A. J. Experimental and Theoretical Studies on
the Nazarov Cyclization/Wagner-Meerwein Rearrangement Se-
quence. J. Am. Chem. Soc. 2012, 134, 6296−6308. (m) Wu, Y.-K.;
Dunbar, C. R.; McDonald, R.; Ferguson, M. J.; West, F. G.
Experimental and Computational Studies on Interrupted Nazarov
Reactions: Exploration of Umpolung Reactivity at the α-Carbon of
Cyclopentanones. J. Am. Chem. Soc. 2014, 136, 14903−14911.
(20) (a) Gouranourimi, A.; Chipman, A.; Babaahmadi, R.; Olding,
A.; Yates, B. F.; Ariafard, A. Nazarov cyclisations initiated by DDQ-
oxidised pentadienyl ether: a mechanistic investigation from the DFT
perspective. Org. Biomol. Chem. 2018, 16, 9021−9029. (b) Smith, C.
D.; Rosocha, G.; Mui, L.; Batey, R. A. Investigation of Substituent
Effects on the Selectivity of 4π-Electrocyclization of 1,3-Diarylallylic
Cations for the Formation of Highly Substituted Indenes. J. Org.
Chem. 2010, 75, 4716−4727.
3
3
Triflates, Indanones, and Indenes. J. Org. Chem. 2016, 81, 1967−
980.
13) (a) Zhu, L.; Xi, Z.-G.; Lv, J.; Luo, S. In(III)/PhCO H Binary
Acid Catalyzed Tandem [2 + 2] Cycloaddition and Nazarov Reaction
Between Alkynes and Acetals. Org. Lett. 2013, 15, 4496−4499. (b) Xi,
Z. G.; Zhu, L.; Luo, S.; Cheng, J. P. Catalytic Nazarov Reaction of
Aryl Vinyl Ketones via Binary Acid Strategy. J. Org. Chem. 2013, 78,
1
(
2
6
06−613. (c) Zhou, X.; Zhao, Y.; Cao, Y.; He, L. Catalytic Efficient
Nazarov Reaction of Unactivated Aryl Vinyl Ketones via a Bidentate
Diiron Lewis Acid Activation Strategy. Adv. Synth. Catal. 2017, 359,
3
(
325−3331.
14) For a cyclization strategy capitalizing on β-silicon stabilization,
see: Carmichael, R. A.; Sophanpanichkul, P.; Chalifoux, W. A. β-Silyl-
Assisted Tandem Diels-Alder/Nazarov Reaction of 1-Aryl-3-(trime-
thylsilyl) Ynones. Org. Lett. 2017, 19, 2592−2595.
(
15) For catalytic cyclization of aryl alkylidene β-ketoester substrates
using copper (II) triflate, see (a) Kerr, D. J.; Metje, C.; Flynn, B. L. A
convenient two step protocol for the synthesis of cyclopentenones
and indanones, including an asymmetric variant. Chem. Commun.
2003, 1380−1381. (b) Nie, J.; Zhu, H.-W.; Cui, H.-F.; Hua, M.-Q.;
Ma, J.-A. Catalytic Stereoselective Synthesis of Highly Substituted
Indanones via Tandem Nazarov Cyclization and Electrophilic
Fluorination Trapping. Org. Lett. 2007, 9, 3053−3056.
(
16) (a) Viswanathan, G. S.; Li, C.-J. A highly stereoselective, novel
coupling reaction between alkynes and aldehydes. Tetrahedron Lett.
2
002, 43, 1613−1615. (b) Zhou, X.; Zhang, H.; Xie, X.; Li, Y.
Efficient Synthesis of 3-Iodoindenes via Lewis-Acid Catalyzed Friedel-
Crafts Cyclization of Iodinated Allylic Alcohols. J. Org. Chem. 2008,
7
3, 3958−3960. (c) Yeh, M.-C. P.; Lin, M.-N.; Hsu, C.-H.; Liang, C.-
J. Syntheses of 3,4-Disubstituted Pyrroles and Furans via Lewis Acid-
Promoted Semipinacol Rearrangement/Alkyne-Ketone Metathesis
Reaction of (C)-2-N- or O-((3-Arylpropargyl)methyl)-Tethered
3
,5,5-Trimethyl-2,3-epoxycyclohexan-1-ones. J. Org. Chem. 2013, 78,
1
2381−12396. (d) Strom, K. R.; Impastato, A. C.; Moy, K. J.;
Landreth, A. J.; Snyder, J. K. Gallium(III)-Promoted Halocyclizations
(21) Zheng, J.; Xu, X.; Truhlar, D. G. Minimally augmented
Karlsruhe basis sets. Theor. Chem. Acc. 2011, 128, 295−305.
of 1,6-Diynes. Org. Lett. 2015, 17, 2126−2129.
(
17) (a) Alachouzos, G.; Frontier, A. J. Diastereoselective
(22) Bauza, A.; Quinonero, D.; Deya, P. M.; Frontera, A. Is the Use
̃
́ ̀
Construction of Densely Functionalized 1-Halocyclopentenes Using
an Alkynyl Halo-Prins/Halo-Nazarov Cyclization Strategy. Angew.
Chem., Int. Ed. 2017, 56, 15030−15034. (b) Alachouzos, G.; Frontier,
A. J. Cationic Cascade for Building Complex Polycyclic Molecules
from Simple Precursors: Diastereoselective Installation of Three
Contiguous Stereogenic Centers in a One-Pot Process. J. Am. Chem.
Soc. 2019, 141, 118−122.
of Diffuse Functions Essential for the Properly Description of
Noncovalent Interactions Involving Anions? J. Phys. Chem. A 2013,
117, 2651−2655.
(23) Miranda, P. O.; Ramírez, M. A.; Martín, V. S.; Padron, J. I.
́
Factors Controlling the Alkyne Prins Cyclization: The Stability of
Dihydropyranyl Cations. Chem. - Eur. J. 2008, 14, 6260−6268.
(24) For chloroacetaldehyde dimethyl acetal, Prins product was
never observed in the presence of protic acid despite heating, varying
the molecular sieve pore size, doubling the amount of molecular
sieves, doubling the amount of triflic acid, or using TBAI instead of
TBAB. We rationalize its poor reactivity as a result of stabilizing
(
18) (a) Hiyama, T.; Tsukanaka, M.; Nozaki, H. Acid-Catalyzed
Reaction of Dichlorocyclopropyl-carbinols. Preparation of 2-Cyclo-
pentenones. J. Am. Chem. Soc. 1974, 96, 3713−3714. (b) Hiyaina, T.;
Shinoda, M.; Nozaki, H. Cyclopentenone Synthesis From Ketones
and 1,1-Dichloroallyllithium. Tetrahedron Lett. 1978, 19, 771−774.
effects from the lone pairs of chlorine. FeBr may have facilitated
3
(
c) Gaoni, Y. Cyclopentenones from Dichlorocarbene Adducts of
product formation by interfering with this stabilizing effect through a
coordinative interaction.
(25) Carballo, R. M.; Ramírez, M. A.; Rodríguez, M. L.; Martín, V.
Sulfolenes. Tetrahedron Lett. 1978, 19, 3277−3278. (d) Hiyama, T.;
Shinoda, M.; Tsukanaka, M.; Nozaki, H. Cyclopentenone Synthesis
from 1,1-Dichloroallyllithium-Ketone Adducts as Well as from
Dichlorocarbene-Allyl Alcohol Adducts. Bull. Chem. Soc. Jpn. 1980,
S.; Padron, J. I. Iron(III)-Promoted Aza-Prins-Cyclization: Direct
́
Synthesis of Six-Membered Azacycles. Org. Lett. 2006, 8, 3837−3840.
(26) The designation of ortho and para indicate the position of the
methoxy substituent relative to the bond that has formed after the
5
3, 1010−1014. (e) Santelli-Rouvier, C. Reactivite Des Gem-
Dibromocyclopropanes-IV. Tetrahedron 1981, 37, 4195−4200.
19) For computational studies on the Nazarov cyclization see ref 9,
0a, and: (a) Smith, D. A.; Ulmer, C. W., II. Theoretical Studies of
the Nazarov Cyclization 1. 1,4-Pentadien-3-one. Tetrahedron Lett.
991, 32, 725−728. (b) Smith, D. A.; Ulmer, C. W., II. Theoretical
(
1
(28) (a) Tan, K. L. Induced Intramolecularity: An Effective Strategy
in Catalysis. ACS Catal. 2011, 1, 877−886. (b) Hesp, C. R.;
1
H
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX