7266
L. Malet-Sanz et al. / Tetrahedron Letters 50 (2009) 7263–7267
Acknowledgements
R
We acknowledge the support received within Sandwich Chem-
N
istry Leadership Team for the realisation of this project. We would
like to thank Jonathan Fray, Andrew Mansfield, the ITC group at the
University of Cambridge, Duncan Miller, Alan Jessiman and Dafydd
Owen for their assistance and guidance.
N
OH
R
R
5
6
Supplementary data
Figure 3. Common by-products.
Supplementary data associated with this article can be found, in
I
NH2
CN
1.5 eq t-BuONO
1.0 eq I2
References and notes
1. (a) Wiles, C.; Watts, P. Expert Opin. Drug Disc. 2007, 2, 1487–1503; (b) Geyer, K.;
Codée, J. D. C.; Seeberger, P. H. Chem. Eur. J. 2006, 12, 8434–8442; (c) Mason, B.
P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007,
107, 2300–2318; (d) Styring, P.; Parracho, A. I. R. Beilstein J. Org. Chem. 2009, 5,
29.
MeCN, 60 °C
25 min
CN
91% (in flow)a
82% (in batch)
2. Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N.; Smith, C. D.; Tierney, J. T.
Org. Biomol. Chem. 2008, 6, 1577–1586.
3. (a) Urben, P. G., 6th ed.. In Bretherick’s Handbook of Reactive Chemical hazards;
Butterworth Heinemann Ltd: Oxford, 1999; Vol. 2; (b) UK chemical reaction
1993, 225, 201–211; (d) Zollinger, H. In Supplement F2: The Chemistry of Amino,
Nitroso, Nitro and Related Groups; Patai, S., Ed.; John Wiley & Sons Ltd, 1996.
Chapter 13.
4. Fortt, R.; Wootton, R. C. R.; de Mello, A. J. Org. Process Res. Dev. 2003, 7,
762–776.
5. (a) Hodgson, H. H. Chem. Rev. 1947, 40, 251; (b) Doyle, W. H. J. Loss Prev. Process
Ind. 1969, 3, 14; (c) Nielsen, M. A.; Nielsen, M. K.; Pittelkow, T. Org. Process Res.
Dev. 2004, 8, 1059–1064; (d) Schroer, J. Eur. Pat. Appl. EP 827958 A1 19980311,
1998; Chem. Abstr. 1998, 128, 217230.
1.5 eq t-BuONO
1.0 eq I2
I
NH2
Br
CN
CN
MeCN, 60 °C
25 min
Br
66% (in flow)b
26% (in batch)
6. (a) Wootton, R. C. R.; Fortt, R.; de Mello, A. J. Lab Chip 2002, 2, 5–7; (b) Wootton,
R.; de Mello, A. J. Lab Chip 2002, 2, 7N–13N; (c) Jung, R.; Nickel, U.; Saitmacher,
K.; Unverdorben, L. U.S. Patent US 2001029294; Chem. Abstr. 2001, 135,
167969.; (d) Greenway, G. M.; Haswell, S. J.; Petsul, P. H. Anal. Chim. Acta 1999,
387, 1–10; (e) Salimi-Moosavi, H.; Tang, T.; Harrison, D. J. J. Am. Chem. Soc. 1997,
119, 8716–8717; (f) Roberge, D. M.; Zimmermann, B.; Rainone, F.; Gottsponer,
M.; Eyholzer, M.; Kockmann, N. Org. Process Res. Dev. 2008, 12, 905–910.
7. Schwalbe, T.; Autze, V.; Hohmann, M.; Stirner, W. Org. Process Res. Dev. 2004, 8,
440–454.
8. (a) Bissember, A. C.; Banwell, M. G. J. Org. Chem. 2009, 74, 4893–4895; (b)
Stavber, S.; Jereb, M.; Zupan, M. Synthesis 2008, 10, 1487; (c) Miyaura, N.;
Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 36, 3437–3440; (d) Miyaura, N.;
Sukuki, A. Chem. Commun. 1979, 866–867; (e) Sonogashira, K.; Tohda, Y.;
Hagihara, N. Tetrahedron Lett. 1975, 16, 4467–4470; (f) Negishi, E.; King, A. O.;
Okukado, N. J. Org. Chem. 1977, 42, 1821–1823.
a Entry 1, Table 2
b Entry 3, Table 2
Scheme 3. Representative batch comparison.
tion. 5-Bromo-2-iodobenzonitrile in batch was isolated in 26%
yield, compared with the 66% yield obtained in the flow reaction
(Scheme 3). In both cases the amount of by-product formation in-
creased, and in the latter case in a significant amount, as well as
having incomplete conversion of the starting material. We believe
the improvement achieved in flow is due to the high control of
reaction parameters that flow chemistry offers.
9. Galli, C. Chem. Rev. 1988, 88, 765–792.
The use of continuous flow allows reactions to be scaled up
safely and readily. To demonstrate this, we scaled the reaction with
4-aminobenzonitrile (entry 1, Table 1) up to 42 mmol from the ini-
tial 1.5 mmol. In order to increase the throughput, the flow rate
and the reactor volume was increased such that the residence time
remained unchanged. The reactor volume went from 10 to 40 mL
and the combined flow rate from 0.4 mL/min to 1.6 mL/min. The
amount of reactive intermediate in the reactor at one time was still
limited to 3 mmol. In total, 8.8 g of the desired 4-iodobenzonitrile
was obtained in 91% isolated yield. In addition, the material was all
processed in under 7 h.21
In conclusion, we have developed a reliable procedure for the
facile iododeamination of aromatic and heteroaromatic amines in
continuous flow. The high control of the reaction variables using
the flow technique significantly improved the yield over the corre-
sponding batch procedures. Combined with the advantages of the
continuous flow method for reaction scale-up (when exploiting
highly reactive intermediates) this makes this iododeamination
procedure of high synthetic utility and simple application. This
work opens the scope to further develop the formation and exploi-
tation of diazonium species in continuous flow processes. Work in
this direction is currently underway in our laboratories and will be
reported in due course.
11. Friedman, L.; Chlebowski, J. F. J. Org. Chem. 1968, 33, 1636–1638.
12. (a) Cadogan, J. I. G.; Roy, D. A.; Smith, D. M. J. Chem. Soc. 1966, 1249–1250; (b)
Beck, J. R.; Gajewski, R. P.; Lynch, M. P.; Wright, F. L. J. Heterocycl. Chem. 1987,
24, 267–270.
13. Sandmeyer, T. Chem. Ber. 1884, 17, 1633. 2650.
14. (a) Smith, W. B.; Chenpu Ho, O. J. Org. Chem. 1990, 55, 2543–2545; (b) Ku, H.;
Barrio, J. R. J. Org. Chem. 1981, 46, 5239–5241; (c) Cadogan, J. I. G.; Landells, R.
G. M.; Sharp, J. T. J. Chem. Soc., Perkin Trans. 1 1977, 1841–1843; (d) Paton, R.
M.; Weber, R. U. Org. Magn. Reson. 1977, 9, 494–496.
15. Galli, C. J. Chem. Soc., Perkin Trans. 2 1981, 1459–1461.
16. Doyle, M. P.; Siegfried, B.; Dellaria, J. F. J. Org. Chem. 1977, 42, 2426–2431.
17. (a) Liddle, B. J.; Gardinier, J. R. J. Org. Chem. 2007, 72, 9794–9797; (b)
Beletskaya, I. P.; Sigeev, A. S.; Peregudov, A. S. J. Organomet. Chem. 2004, 689,
3810–3812; (c) Ek, F.; Wistrand, L. G.; Frejd, T. J. Org. Chem. 2003, 68, 1911–
1918.
18. Cadogan, J. I. G.; Molina, G. A. J. Chem. Soc., Perkin Trans. 1 1973, 541–542.
19. Representative flow procedure: The amine (1.5 mmol) was flowed in anhydrous
acetonitrile (150
lM) into a T-piece, where it was mixed with a second stream
containing iodine (1.5 mmol, 150
l
M) and t-butyl nitrite (2.3 mmol, 225 M),
l
also in anhydrous acetonitrile. The reagents were added through the top reagent
inlet of the Vapourtec and the valves were switched to the solvent position after
aspiration was complete. The combined reagents were flowed into a loop reactor
with an internal volume of 10 mL at 60 °C at a combined flow rate of 0.4 mL/min,
giving a residence time of 25 min. The system was fitted with a back pressure
regulator of 100 psi. Thecollected streamwas quenched intoan aqueous Na2S2O3
solution (20 mL) and was concentrated under reduced pressure to remove most
of the acetonitrile. Theaqueous phasewas extracted with EtOAc(4 Â 10 mL). The
combined organics were dried over MgSO4, filtered and concentrated under
reduced pressure to yield a solid. The solid was preloaded onto silica and purified