Conformational Analysis
J . Org. Chem., Vol. 62, No. 26, 1997 9157
Ta ble 4. Com p u ted Con for m a tion a l Equ ilibr ia a n d F r ee
En er gy Differ en ces for Meth yl- a n d
5.1 Hz), 2.93 (ddd, 1H, J gem ) 12.4 Hz, J vic ) 8.7, 4.7 Hz), 2.80
(dddd, 1H, J gem ) 16.2 Hz, J vic ) 8.7, 4.7 Hz, J long range ) 1.1
Hz), 2.67 (br dt, 1H, J gem ) 16.2 Hz, J vic ) 4.7 Hz), 1.68 (s,
Dim eth yl-Su bstitu ted Tetr a h yd r op yr id in es
1
3
substituents(s)a
conformer ratiob
-∆G°, kcal mol-1
1H), 1.38 (d, 3H, J ) 6.7 Hz). C NMR (CD
δ 141.3 , 135.4 , 129.4 , 126.1 , 126.0 , 126.0
0.5 , 22.9 H NMR (D O + DCl): δ 7.37-7.26 (m, 4H), 4.67
quartet, 1H, J ) 6.8 Hz), 3.62 (ddd, 1H, J gem ) 13.0 Hz, J vic
6.6, 5.9 Hz), 3.44 (ddd, 1H, J gem ) 13.0 Hz, J vic ) 7.5, 5.7
Hz), 3.19 (br dt, 1H, J gem ) 17.6 Hz, J vic ≈ 6.7 Hz), 3.11 (dt,
2
Cl
2
+ CHCldCCl
2
):
3
9
5
5
6
1
, 51.9 , 42.1
9
9
,
1
3
4
-Me
-Me
-Me
87/13
93/7
1.13
1.53
0.72
large
0.53
0.42
1.88
1
3
2
4
.
2
(
)
77/23
100/0
71/29
67/33
96/4
c
cis-1,3-Me2
trans-1,3-Me2
cis-1,4-Me2
trans-1,4-Me2
c
1
H, J gem ) 17.6 Hz, J vic ) 6.2 Hz), 1.72 (d, 3H, J ) 6.8 Hz).
d
1
3
d
C NMR (D
28.6 , 53.7
2
O + DCl): δ 135.5 , 129.7
4
, 133.6
4
, 131.5
5
, 130.5
7
5
,
1
13
1
9
2
, 41.6 , 27.3 , 21.2 . The H and C NMR data
4
3
9
a
23
For easier comparison with Table 1, the THIQ numbering
system is used here. Properly the locants should be 2, 6, and 5.
are in excellent agreement with those reported.
-Met h yl-1,2,3,4-t et r a h yd r oisoq u in olin e. The corre-
sponding crude 3,4-dihydroisoquinoline (25.54 g, 0.176 mol)
was reduced with NaBH as described above: yield 21.32 g,
2.3%; bp 85-87 °C (0.5 mm), lit. bp 105-107 °C (7 mm).
3
b
d
c
e/a as calculated by MMP2(85) assuming ∆S ) 0. Me(3) a f e.
Me(1) a f e.
4
2
4
8
1
H NMR (CD
2
Cl
.96 (m, 1H), 4.02 (d, 1H, J gem ) 15.9 Hz), 3.96 (d, 1H, J gem
5.9 Hz), 2.94 (dd of quartet, 1H, J Me ) 6.3 Hz, J vic ) 10.3, 3.9
2
+ CHCldCCl ): δ 7.09-7.01 (m, 3H), 6.99-
2
6
1
)
Hz), 2.71 (dd, 1H, J gem ) 16.3 Hz, J vic ) 3.9 Hz), 2.43 (dd, 1H,
gem ) 16.3 Hz, J vic ) 10.3 Hz), 1.58 (br s, 1H), 1.17 (d, 3H, J
6.3 Hz). 13C NMR (CD
Cl + CHCldCCl ): δ 136.1 , 135.6
129.3 , 126.2 , 126.1 , 125.7 , 48.9 , 49.6 , 37.6
(D O + DCl): δ 7.39-7.25 (m, 4H), 4.44 (d, 1H, J gem ) 16.0
Hz), 4.39 (d, 1H, J gem ) 16.0 Hz), 3.59 (dd of quartet, 1H, J )
.5 Hz, J vic ) 10.7, 4.7 Hz), 3.14 (dd, 1H, J gem ) 17.5 Hz, J vic
4.7 Hz), 2.96 (dd, 1H, J gem ) 17.5 Hz, J vic ) 10.7 Hz), 1.53
d, 3H, J ) 6.5 Hz). 13C NMR (D
O + DCl): δ 133.7 , 131.4
, 52.2 , 46.5 , 34.8 , 20.2 . The
J
)
2
2
2
9
0
,
1
larger than desirable deviation for the trans-1,3 com-
pound where a relatively small difference between rela-
tively large numbers is involved. More to the point of
the discussion is the fact that, while the value for Me(3)
in Table 4 is the same as the calculated value for
5
5
4
8
8
7
9 0
, 22.6 . H NMR
2
6
)
(
2
2
0
,
3
-MeTHIQ in Table 1, the values for Me(1) and Me(4)
1
30.4
8
, 129.5
8
, 129.4
5
, 128.9
4
9
7
3
7
are much smaller for the THIQ derivatives shown in
1
H NMR spectrum is in very good agreement with that
-1
25
Table 1sby 0.68 and 0.94 kcal mol , respectively. These
numbers thus express the magnitude of the peri effect
in positions 1 and 4, respectively. [That the values differ
is presumably due to differences in Me-C-C-Hperi torsion
angles C(1) and C(4).] It is of particular note that Me(4)
in 4-MeTHIQ prefers the axial position; in this case the
axial Me has no syn-axial Me/H interaction but the
equatorial Me has a peri interaction. In contrast, for the
corresponding tetrahydropyridine, which lacks the peri
interaction, the equatorial conformer is yet preferred,
thus confirming the known fact21 that the syn-axial Me/H
interaction is not the only factor destabilizing axial
methyl.
reported except that the reported spectrum was not resolved
in the 2.4-3.5 ppm region.
4-Met h yl-1,2,3,4-t et r a h yd r oisoq u in olin e. The corre-
sponding crude 3,4-dihydroisoquinoline (0.41 g, 2.8 mmol) was
reduced with NaBH
4
as described above: yield 0.32 g, 77%;
2
3
bp 76-78 °C (airbath temperature) (2 mm), lit. bp 55-60 °C
1
(
0.1 mm). H NMR (CD
2
Cl
2
+ CHCldCCl ): δ 7.17 (d, 1H, J
2
)
7.3 Hz), 7.12 (td, 1H, J ) 7.4 Hz, J ) 1.6 Hz), 7.07 (td, 1H,
J ) 7.3, 1.6 Hz), 6.96 (d, 1H, J ) 6.6 Hz), 3.94 (d, 1H, J gem
16.2 Hz), 3.90 (d, 1H, J ) 16.2 Hz), 3.13 (dd, 1H, J gem
)
)
gem
12.3 Hz, J vic ) 4.8 Hz), 2.82 (br sextet, 1H, J vic ) 5.9 Hz), 2.74
(dd, 1H, J gem ) 12.3 Hz, J ) 5.9 Hz), 1.92 (s, 1H), 1.24 (d,
vic
1
3
3
1
H, J ) 6.9 Hz). C NMR (CD
2
Cl
2
+ CHCldCCl
2
): δ 140.8
, 20.8
2
,
.
36.3 , 128.5 , 126.3 , 126.2 , 125.8
7
0
9
7
6
, 51.5 , 49.1 , 32.6
8
9
3
4
1
H NMR (D
7.6 Hz), 4.42 (d, 1H, J gem ) 15.8 Hz), 4.38 (d, 1H, J gem
15.8 Hz), 3.64 (dd, 1H, J ) 12.5 Hz, J ) 5.6 Hz), 3.34
2
O + DCl): δ 7.46-7.31 (m, 3H), 7.26 (br d, 1H, J
)
)
Exp er im en ta l Section
gem
vic
(
sextet, 1H, J ≈7.0 Hz), 3.17 (dd, 1H, J gem ) 12.5 Hz, J vic ) 8.3
Gen er a l P r oced u r es. 1H NMR and 13C NMR spectra were
recorded at 250.13 or 399.92 MHz and 62.89 or 100.57 MHz,
13
Hz), 1.41 (dd, 3H, J ) 6.9 Hz, J long range ) 0.6 Hz). C NMR
O + DCl): δ 139.2 , 130.6 , 129.8 , 129.5 , 129.4 , 129.1
9.9 , 47.1 , 31.3 , 21.0
. The 1H and C NMR data are in
excellent agreement with those reported.
(
4
D
2
3
8
8
0
2
2
,
respectively, using TMS or (in D
2
O) DSS [3-(trimethylsilyl)-
13
2
7
9
2
1
-propanesulfonic acid, sodium salt] as internal standards.
2
3
Abbreviations used are s, singlet; d, doublet; t, triplet; dd,
doublet of doublets; m, multiplet; and br, broad. All 1,2,3,4-
tetrahydroisoquinolines were purified by preparative GC on
a 20% Carbowax 20M plus 10% KOH on Chromosorb A, 60/
cis- a n d tr a n s-1,3-Dim eth yl-1,2,3,4-tetr a h yd r oisoqu in -
olin e.26 The corresponding crude 3,4-dihydroisoquinoline
(
11.04 g, 0.069 mol) was reduced with NaBH
above to yield a diastereomeric mixture (6.86 g, 61.4%, c:t ≈
:1 by NMR); bp 119-123 °C (20 mm), lit.26 bp 125-130 °C
23 mm). The two isomers were separated by HPLC using
ethyl acetate/acetone (9/1) as solvent. The cis isomer was the
4
as described
8
0 mesh. Melting points are uncorrected.
-Meth yl-1,2,3,4-tetr a h yd r oisoqu in olin e. A solution of
the crude 3,4-dihydroisoquinoline (1.51 g, 10.4 mmol) and 0.55
g of NaBH in 50 mL methanol was refluxed for 1 h and
allowed to cool to room temperature.
removed under reduced pressure, and the product was taken
up in H O (20 mL) and extracted with Et
O (3 × 50 mL). The
organic layers were combined, dried (MgSO ), and concen-
trated. Kugelrohr distillation yielded the pure product (0.92
3
(
1
4
1
2
2
first product to be eluted from the column. H NMR (CD
CHCldCCl ): δ 7.17-7.05 (m, 3H), 7.03-7.00 (m, 1H), 4.09
quartet, 1H, J ) 6.5 Hz), 2.98 (dd of quartet, 1H, J ) 6.2 Hz,
vic ) 11.0, 3.6 Hz), 2.68 (dd, 1H, J gem ) 15.9 Hz, J vic ) 3.6
Hz), 2.49 (dd, 1H, J gem ) 15.9 Hz, J vic ) 11.0 Hz), 1.49 (br s,
2 2
Cl
The methanol was
+
(
J
2
2
2
4
1
3
2
3
1H), 1.40 (d, 3H, J ) 6.5 Hz), 1.18 (d, 3H, J ) 6.2 Hz).
NMR (CD
126.2 , 125.5
C
g, 60%): bp 76-79 °C (airbath temperature) (0.5 mm), lit.
2
Cl
2
+ CHCldCCl
2
): δ 140.8
, 22.8
3
, 135.8
, 22.5
7
, 129.3
H NMR (D O
1
, 126.2
5
,
bp 78-80 °C (0.06 mm).
1
1
0
7
, 53.0 , 49.5 , 38.8
3
0
2
1
9
.
2
H NMR (CD
2
Cl
2
+ CHCldCCl ): δ 7.11-7.02 (m, 4H), 4.03
quartet, 1H, J ) 6.7 Hz), 3.18 (dt, 1H, J gem ) 12.4 Hz, J vic )
2
+
DCl): δ 7.41-7.24 (m, 4H), 4.64 (quartet, 1H, J ) 6.8 Hz),
(
3
.59 (septet, 1H, J vic ) 5.8 Hz), 3.12 (dd, 1H, J gem ) 17.3 Hz,
(
21) Cf. Eliel, E. L.; Allinger, N. L.; Angyal, S. J .; Morrison, G. A.
Conformational Analysis; Wiley: New York, 1965; p 456.
22) Awe, W.; Wichmann, H.; Buerhop, R. Chem. Ber. 1957, 90,
997-2003.
23) Grunewald, G. L.; Sall, D. J .; Monn, J . A. J . Med. Chem. 1988,
1, 433-444.
(24) Nose, A.; Kudo, T. Chem. Pharm. Bull. 1984, 32, 2421-2425.
(25) Beugelmans, R.; Chastanet, J .; Roussi, G. Tetrahedron 1984,
(
1
40, 311-314.
(
(26) Bailey, D. M.; DeGrazia, C. G.; Lape, H. E.; Frering, R.; Fort,
D.; Skulan, T. J . Med. Chem. 1973, 16, 151-156.
3