Chemistry of Materials
Page 8 of 10
Calculation of TOF, acidic sites density and crosslink
of Methane to Methanol. Angew. Chem. Int. Ed. 2009, 48, (37),
6909-6912.
1
2
3
4
5
6
7
8
content, characterizations of PPhen-SO3H-0% and
PPhen-SO3H-100%, catalytic performance of PPhen-
SO3H and commercial acidic resins (PDF)
Movies demonstrating hydrophobicity of PPhen and
PPhen-SO3H (MP4)
(11) Sidorov, S. N.; Volkov, I. V.; Davankov, V. A.; Tsyurupa, M.
P.; Valetsky, P. M.; Bronstein, L. M.; Karlinsey, R.; Zwanziger, J.
W.; Matveeva, V. G.; Sulman, E. M.; Lakina, N. V.; Wilder, E. A.;
Spontak, R. J., Platinum-Containing Hyper-Cross-Linked
Polystyrene as a Modifier-Free Selective Catalyst for l-Sorbose
Oxidation. J. Am. Chem. Soc. 2001, 123, (43), 10502-10510.
(12) Richter, F. H.; Pupovac, K.; Palkovits, R.; Schüth, F., Set of
Acidic Resin Catalysts To Correlate Structure and Reactivity in
Fructose Conversion to 5-Hydroxymethylfurfural. ACS Catal.
2012, 3, (2), 123-127.
(13) Zhang, Y.; Wei, S.; Liu, F.; Du, Y.; Liu, S.; Ji, Y.; Yokoi, T.;
Tatsumi, T.; Xiao, F.-S., Superhydrophobic nanoporous
polymers as efficient adsorbents for organic compounds. Nano
Today 2009, 4, (2), 135-142.
AUTHOR INFORMATION
Corresponding Author
9
* E-mail: ryan.wang@ucl.ac.uk (F.R.W.)
Notes
The authors declare no competing financial interest.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENT
The project is funded by EPSRC (EP/P02467X/1 and
EP/S018204/2), Royal Society (RG160661, IES\R3\170097,
IES\R1\191035), the Newton Fellowship (NF170761). We
acknowledge Diamond Light Source beamtime (EM22572 and
EM21641). This research has been performed with the use of
facilities at the Research Complex at Harwell including DRIFTS
equipment. The authors would like to thank the Research
Complex for access and support to these facilities and
equipment.
(14) Wang, G.-H.; Sun, Q.; Zhang, R.; Li, W.-C.; Zhang, X.-Q.; Lu,
A.-H., Weak Acid–Base Interaction Induced Assembly for the
Synthesis of Diverse Hollow Nanospheres. Chem. Mater. 2011,
23, (20), 4537-4542.
(15) Chen, L.; Yang, Y.; Jiang, D., CMPs as Scaffolds for
Constructing Porous Catalytic Frameworks:
A Built-in
Heterogeneous Catalyst with High Activity and Selectivity
Based on Nanoporous Metalloporphyrin Polymers. J. Am. Chem.
Soc. 2010, 132, (26), 9138-9143.
(16) Mackintosh, H. J.; Budd, P. M.; McKeown, N. B., Catalysis by
microporous phthalocyanine and porphyrin network
polymers. J. Mater. Chem. 2008, 18, (5), 573-578.
(17) Liu, F.; Wang, L.; Sun, Q.; Zhu, L.; Meng, X.; Xiao, F.-S.,
Transesterification Catalyzed by Ionic Liquids on
Superhydrophobic Mesoporous Polymers: Heterogeneous
Catalysts That Are Faster than Homogeneous Catalysts. J. Am.
Chem. Soc. 2012, 134, (41), 16948-16950.
(18) Rinaldi, R.; Palkovits, R.; Schüth, F., Depolymerization of
Cellulose Using Solid Catalysts in Ionic Liquids. Angew. Chem.
Int. Ed. 2008, 47, (42), 8047-8050.
(19) Izumi, Y., Hydration/hydrolysis by solid acids. Catal. Today
1997, 33, (4), 371-409.
(20) Liang, S.; Hammond, G. B.; Xu, B., Efficient hydration of
alkynes through acid-assisted Bronsted acid catalysis. Chem
Commun (Camb) 2015, 51, (5), 903-6.
(21) Tanemura, K.; Suzuki, T., Hydration of aromatic terminal
alkynes catalyzed by sulfonated condensed polynuclear
aromatic (S-COPNA) resin in water. Tetrahedron Lett. 2017, 58,
(10), 955-958.
(22) Chai, S.-H.; Wang, H.-P.; Liang, Y.; Xu, B.-Q., Sustainable
production of acrolein: gas-phase dehydration of glycerol over
12-tungstophosphoric acid supported on ZrO2 and SiO2. Green
Chem. 2008, 10, (10), 1087-1093.
REFERENCES
(1) Wood, C. D.; Tan, B.; Trewin, A.; Su, F.; Rosseinsky, M. J.;
Bradshaw, D.; Sun, Y.; Zhou, L.; Cooper, A. I., Microporous
organic polymers for methane storage. Adv. Mater. 2008, 20,
(10), 1916-1921.
(2) Du, N.; Robertson, G. P.; Song, J.; Pinnau, I.; Thomas, S.;
Guiver, M. D., Polymers of intrinsic microporosity containing
trifluoromethyl and phenylsulfone groups as materials for
membrane gas separation. Macromolecules 2008, 41, (24),
9656-9662.
(3) Abidian, M. R.; Kim, D. H.; Martin, D. C., Conducting-polymer
nanotubes for controlled drug release. Adv. Mater. 2006, 18,
(4), 405-409.
(4) Zhao, C.; Danish, E.; Cameron, N. R.; Kataky, R., Emulsion-
templated porous materials (PolyHIPEs) for selective ion and
molecular recognition and transport: applications in
electrochemical sensing. J. Mater. Chem. 2007, 17, (23), 2446-
2453.
(5) Schacher, F.; Ulbricht, M.; Müller, A. H., Self-supporting,
double stimuli-responsive porous membranes from
polystyrene-block-poly
(N,
N-dimethylaminoethyl
methacrylate) diblock copolymers. Adv. Funct. Mater. 2009, 19,
(7), 1040-1045.
(6) Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K.,
Design and Preparation of Porous Polymers. Chem. Rev. 2012,
112, (7), 3959-4015.
(7) Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S., Porous polymer
catalysts with hierarchical structures. Chem. Soc. Rev. 2015, 44,
(17), 6018-6034.
(8) Sakaushi, K.; Nickerl, G.; Wisser, F. M.; Nishio-Hamane, D.;
Hosono, E.; Zhou, H.; Kaskel, S.; Eckert, J., An energy storage
principle using bipolar porous polymeric frameworks. Angew.
Chem. Int. Ed. 2012, 51, (31), 7850-7854.
(9) Kuhn, P.; Antonietti, M.; Thomas, A., Porous, covalent
triazine-based frameworks prepared by ionothermal
synthesis. Angew. Chem. Int. Ed. 2008, 47, (18), 3450-3453.
(10) Palkovits, R.; Antonietti, M.; Kuhn, P.; Thomas, A.; Schuth,
F., Solid Catalysts for the Selective Low-Temperature Oxidation
(23) Chai, S. H.; Wang, H. P.; Liang, Y.; Xu, B. Q., Sustainable
production of acrolein: investigation of solid acid-base
catalysts for gas-phase dehydration of glycerol. Green Chem.
2007, 9, (10), 1130-1136.
(24) Tang, H.; Li, N.; Li, G. Y.; Wang, W. T.; Wang, A. Q.; Cong, Y.;
Wang, X. D., Dehydration of Carbohydrates to 5-
Hydroxymethylfurfural over Lignosulfonate-Based Acidic
Resin. Acs Sustain Chem Eng 2018, 6, (4), 5645-5652.
(25) Liu, F.; Sun, J.; Zhu, L.; Meng, X.; Qi, C.; Xiao, F.-S., Sulfated
graphene as an efficient solid catalyst for acid-catalyzed liquid
reactions. J. Mater. Chem. 2012, 22, (12), 5495-5502.
(26) Xing, R.; Liu, N.; Liu, Y. M.; Wu, H. W.; Jiang, Y. W.; Chen, L.;
He, M. Y.; Wu, P., Novel solid acid catalysts: Sulfonic acid group-
functionalized mesostructured polymers. Adv. Funct. Mater.
2007, 17, (14), 2455-2461.
ACS Paragon Plus Environment