A. Sarkar et al. / Journal of Molecular Catalysis A: Chemical 327 (2010) 73–79
79
130 m2/g and average pore size of 3.9 nm has been synthesized and
employed successfully in esterification of oleic acid with ethanol to
produce ethyl oleate. The ethyl oleate is an important constituent of
biodiesels. The synthesized mesoporous SnO2/WO3 exhibits ∼90%
conversion of oleic acid and the corresponding yield of ethyl oleate
has been achieved to ∼92%. The catalyst has been recovered after
the catalytic test and regenerated by heating at 400 ◦C for 3 h and
successfully reused in the same esterification reaction. The meso-
porous SnO2/WO3 can be used for the production of different fatty
acid esters through the acid catalyzed conversion of biorenewable
lipid feedstocks, i.e., the free fatty acids.
Acknowledgement
AS greatly acknowledge CSIR, New Delhi, for providing the
grants to support the completion of this work.
References
[1] N.W. Li, M.H. Zong, H. Wu, Process Biochem. 44 (2009) 685–688.
[2] R. Fernandez-Lafuente, J. Mol. Catal. B: Enzymatic 62 (2010) 197–212.
[3] S. Arai, K. Nakashima, T. Tanino, C. Oginoa, A. Kondo, H. Fukuda, Enzyme Micro-
bial Technol. 46 (2010) 51–55.
[4] H. Fukudaa, A. Kondo, S. Tamalampudi, Biochem. Eng. J. 44 (2009) 2–12.
[5] I.K. Mbaraka, B.H. Shanks, J. Am. Oil Chem. Soc. 3 (2006) 79–91.
[6] L. Bournay, D. Casanave, B. Delfort, G. Hillion, J.A. Chodorge, Catal. Today 106
(2005) 190–192.
Fig. 13. FTIR spectra of the (a) spent mesoporous SW and (b) fresh mesoporous SW
catalyst.
Table 1
EDX data of the fresh SW and regenerated mesoporous SW after the esterification
reaction.
[7] M. Kouzu, S. Yamanaka, J. Hidaka, M. Tsunomori, Appl. Catal. A: Gen. 355 (2009)
94–99.
[8] E. Lotero, Y. Liu, D.E. Lopez, K. Suwannakarn, D.A. Bruce, J.G. Goodwin, Ind. Eng.
Chem. Res. 44 (2005) 5353–5363.
[9] A. Baig, F.T.T. Ng, Energy Fuels, doi:10.1021/ef901258b.
[10] E. Lotero, Y. Liu, D.E. Lopez, K. Suwannakarn, D.A. Bruce, J.G. Goodwin Jr., Ind.
Eng. Chem. Res. 44 (2005) 5353–5363.
Type of catalyst
Fresh mesoporous SW
1.98
Regenerated mesoporous SW
1.96
Molar ratio of Sn/W
[11] D.A.C. Ferreira, M.R. Meneghetti, S.M.P. Meneghetti, C.R. Wolf, Appl. Catal. A:
Gen. 317 (2007) 58–61.
[12] T. Okuhara, Chem. Rev. 102 (2002) 3641–3666.
[13] S.R. Kirumakki, N. Nagaraju, S. Narayanan, Appl. Catal. A: Gen. 273 (2004)
1–9.
[14] A.A. Kiss, A.C. Dimian, G. Rothenberg, Adv. Synth. Catal. 348 (2006) 75–81.
[15] T. Okuhara, Catal. Today 73 (2002) 167–176.
[16] H. Matsuda, T. Okuhara, Catal. Lett. 56 (1998) 241–243.
[17] M.A. Harmer, W.E. Farneth, Q. Sun, J. Am. Chem. Soc. 118 (1996) 7708–7715.
[18] M.A. Harmer, Q. Sun, A.J. Vega, W.E. Farneth, A. Heidekum, W.F. Hoelderich,
Green Chem. 2 (2000) 7–14.
[19] A.A. Kiss, A.C. Dimian, G. Rothenberg, Energy Fuels 22 (2008) 598–604.
[20] Y.-M. Park, D.-W. Lee, D.-K. Kim, J.-S. Lee, K.-Y. Lee, Catal. Today 131 (2008)
238–243.
[21] Y.-M. Park, J.Y. Lee, S.-H. Chung, I.S. Park, S.-Y. Lee, D.-K. Kim, J.-S. Lee, K.-Y. Lee,
Bioresour. Technol. 101 (2010) S59–S61.
[22] C.S. Caetano, I.M. Fonseca, A.M. Ramos, J. Vital, J.E. Castanheiro, Catal. Commun.
9 (2008) 1996–1999.
hols. Since, the molar mass of alcohol influences the diffusion rate
and the reaction rate is linearly dependent on the diffusion rate,
therefore, with the increase in molar mass from ethanol to butanol
the reaction rate decreases for the decrease in diffusion rate and the
conversion of oleic acid also decreases from ethanol to propanol to
butanol within the reaction time limit. Beside, the chain length of
the alcohol also influences in the steric hindrance for the nucle-
3.2.4. Catalyst regeneration and reuse of the spent catalyst
After a catalytic reaction the spent catalyst has been analyzed
by FTIR spectroscopy (Fig. 13a), which exhibits the appearance of
an additional band at ∼1706 cm−1 that should correspond to the
[23] J.A. Melero, L.F. Bautista, G. Morales, J. Iglesias, D. Briones, Energy Fuels 23
(2009) 539–547.
C
O group and two prominent bands between 2800 and 3000 cm−1
for the C–H– stretching. These bands appear due to the adsorbed
reagent or the product. For reusing, after a run, the spent meso-
porous SW catalyst has been separated from the liquid product by
centrifugation and after washing with distilled water regenerated
by heating at 400 ◦C for 3 h which shows complete disappearance
of the bands corresponding to the C O and C–H stretches (Fig. 13b).
The regenerated mesoporous SW has been used for five more runs
to examine its reusability and found that the reused catalyst is very
efficient to that of the fresh catalyst in formation of ethyl ester. EDX
analysis of W content in fresh and regenerated catalyst (Table 1)
shows that the activity of the spent catalyst could be regenerated
completely as there is almost no loss of WO3 after the reaction.
[24] I.K. Mbaraka, K.J. McGuire, B.H. Shanks, Ind. Eng. Chem. Res. 45 (2006)
[25] Y. Wang, Y. Liu, C. Liu, Energy Fuels 22 (2008) 2203–2206.
[26] M. Deepa, N. Sharma, P. Varshney, S.P. Varma, S.A. Agnihotry, J. Mater. Sci. 35
(2000) 5313–5318.
[27] S. de Monredon, A. Cellot, F. Ribot, C. Sanchez, L. Armelao, L. Gueneauc, L.
Delattre, J. Mater. Chem. 12 (2002) 2396–2400.
[28] H.-J. Ahn, H.-S. Shim, Y.-E. Sung, T.-Y. Seong, W.B. Kima, Electrochem. Solid-
State Lett. 10 (2007) E27–E30.
[29] S.J. Gregg, K.S.W. Sing, Adsorption Surface Area and Porosity, Academic Press,
London, 1982.
[30] C. Resini, T. Montanari, L. Nappi, G. Bagnasco, M. Turco, G. Busca, F. Bregani, M.
Notaro, G. Rocchini, J. Catal. 214 (2003) 179–190.
[31] E. Selli, L. Forni, Micropor. Mesopor. Mater. 31 (1999) 129–140.
[32] D.E. López, J.G. Goodwin Jr., D.A. Bruce, S. Furuta, Appl. Catal. A: Gen. 339 (2008)
76–83.
[33] C.S.M. Pereira, S.P. Pinho, V.M.T.M. Silva, A.E. Rodrigues, Ind. Eng. Chem. Res. 47
(2008) 1453–1463.
[34] C.F. Oliveira, L.M. Dezaneti, F.A.C. Garcia, J.L. de Macedo, J.A. Dias, S.C.L. Dias,
K.S.P. Alvim, Appl. Catal. A: Gen. 372 (2010) 153–161.
[35] A.L. Cardoso, S.C.G. Neves, M.J. da Silva, Energy Fuels 23 (2009) 1718–1722.
4. Conclusion
In the present study, a new heterogeneous solid acid cata-
lyst mesoporous SnO2/WO3 composite with BET surface area of