Antimalarial Tetraoxacycloalkanes
J ournal of Medicinal Chemistry, 2001, Vol. 44, No. 14 2361
ether (100 mL) was added to the filtrate, and the organic layer
was washed with 3% aqueous sodium thiosulfate (50 mL),
aqueous NaHCO3, and saturated brine and dried over anhy-
drous MgSO4. After evaporation of the solvent under reduced
pressure, the residue was separated by column chromatogra-
phy on silica gel. Elution with diethyl ether-hexane (1:20)
gave a 5:2 mixture of a peroxide 4g and undecanone 1g (562
mg), which was reacted with a mixture of NH2OH‚HCl (104
mg, 1.50 mmol) and Na2CO3 (212 mg, 2.00 mmol) in 70%
aqueous ethanol (10 mL) at room temperature for 15 h. After
conventional workup, the residue was separated by column
chromatography on silica gel. Elution with diethyl ether-
hexane (1:90) gave the tetroxocane 4g (447 mg, 57%).
Refer en ces
(1) (a) Zhou, W.-S.; Xu, X.-X. Total synthesis of the antimalarial
sesquiterpene peroxide qinghaosu and yingzhaosu A. Acc. Chem.
Res. 1994, 27, 211-216. (b) Haynes, R. K.; Vonwiller, S. C. From
quinghao, marvelous herb of antiquity, to the antimalarial
trioxane qinghaosusand some remarkable new chemistry. Acc.
Chem. Res. 1997, 30, 73-79. (c) Cumming, J . N.; Ploypradith,
P.; Posner, G. H. Antimalarial activity of artemisinin (qinghaosu)
and related trioxanes: mechanism(s) of action. Adv. Pharmcol.
1997, 37, 253-297. (d) Meshnick, S. R.; J efford, C. W.; Posner,
G. H.; Avery, M.; A. Peters, W. Second-generation antimalarial
endoperoxides. Parasitol. Today 1996, 12, 79-82. (e) Bhatta-
charya, A. K.; Sharma, R. P. Recent developments on the
chemistry and biological activity of artemisinin and related
antimalarials-an update. Heterocycles 1999, 51, 1681-1745.
(2) Dong, Y.; Matile, H.; Chollet, J .; Kaminsky, R.; Wood, J . K.;
Vennerstrom, J . L. Synthesis and antimalarial activity of 11
dispiro-1,2,4,5-tetraoxane analogues of WR 148999. 7,8,15,16-
tetraoxadispiro[5.2.5.2]hexadecanes substituted at the 1 and 10
positions with unsaturated and polar functional groups. J . Med.
Chem. 1999, 42, 1477-1480.
(3) (a) Kim, H.-S.; Shibata, Y.; Wataya, Y.; Tsuchiya, K.; Masuyama,
A.; Nojima, M. Synthesis and antimalarial activity of cyclic
peroxides, 1,2,4,5,7-pentoxocanes and 1,2,4,5-tetroxanes. J . Med.
Chem. 1999, 42, 2604-2609 and the references therein. (b) Kim,
H.-S.; Tsuchiya, K.; Shibata, Y.; Wataya, Y.; Ushigoe, Y.;
Masuyama, A.; Nojima, M.; McCullough, K. J . Synthetic methods
for unsymmetrically substituted 1,2,4,5-tetroxanes and of 1,2,4,5,7-
pentoxocanes. J . Chem. Soc., Perkin Trans. 1 1999, 1867-1870.
(4) A part of the result, including the crystal structures of 4a and
5a , has been published preliminary. Tsuchiya, K.; Hamada, Y.;
Masuyama, A.; Nojima, M.; McCullough, K. J .; Kim, H.-S.;
Shibata, Y.; Wataya, Y. Synthesis, crystal structure and anti-
malarial activity of novel spiro-1,2,4,5-tetraoxacycloalkanes.
Tetrahedron Lett. 1999, 40, 4077-4080.
3,3-Dip en tyl-1,2,4,5-tetr oxoca n e 4g: an oil; 1H NMR δ
0.84 (t, J ) 5.4 Hz, 6 H), 1.2-1.7 (m, 16 H), 2.0-2.1 (m, 2 H),
4.0-4.3 (m, 4 H); 13C NMR δ 13.89, 22.45, 23.22, 29.49, 60.41,
31.88, 73.53, 113.34; EIMS m/z 342 (M+, 1), 183 (100). Anal.
(C14H28O4) C, H.
1
8,9,13,14-Tetr a oxa sp ir o[6.7]tetr a d eca n e 4d : an oil; H
NMR δ 1.4-2.3 (m, 14 H), 4.07 (dt, J ) 12.9 and 5.9 Hz, 2 H),
4.34 (dt, J ) 12.9 and 4.7 Hz, 2 H); 13C NMR δ 22.57, 30.12,
30.46, 32.28, 73.42, 113.19. Anal. (C10H18O4) C, H.
1,2,6,7-Tetr a oxa sp ir o[7.7]p en ta d eca n e 4e: an oil; 1H
NMR δ 1.2-2.4 (m, 16 H), 4.07 (dt, J ) 12.9 and 5.7 Hz, 2 H),
4.34 (dt, J ) 12.9 and 5.2 Hz, 2 H); 13C NMR δ 21.85, 24.89,
27.53, 27.93, 30.48, 73.48, 112.18. Anal. (C11H20O4) C, H.
3,3-Dibu tyl-1,2,4,5-tetr oxoca n e 4f: an oil; 1H NMR δ 0.91
(t, J ) 6.9 Hz, 6 H), 1.2-1.8 (m, 12 H), 2.0-2.2 (m, 2 H), 4.08
(dt, J ) 12.9 and 5.8 Hz, 2 H), 4.33 (dt, J ) 12.9 and 4.7 Hz,
2 H); 13C NMR δ 13.91, 22.86, 25.72, 29.33, 73.60, 111.41. Anal.
(C12H24O4) C, H.
3,3-Dih exyl-1,2,4,5-tetr oxoca n e 4h : an oil; 1H NMR δ 0.88
(t, J ) 5.8 Hz, 6 H), 1.2-1.8 (m, 20 H), 2.1-2.2 (m, 2 H), 4.08
(dt, J ) 12.5 and 5.8 Hz, 2 H), 4.33 (dt, J ) 12.9 and 4.6 Hz,
2 H); 13C NMR δ 14.05, 22.57, 23.58, 29.45, 29.63, 30.44, 31.66,
73.64, 111.47. Anal. (C16H32O4) C, H.
3-Hexyl-1,2,4,5-tetr oxoca n e 4j: an oil; 1H NMR δ 0.87 (t,
J ) 6.5 Hz, 3 H), 1.2-1.8 (m, 11 H), 2.6-2.8 (m, 1 H), 4.13
(ddd, J ) 2.8, 7.6, 11.9 Hz, 2 H), 4.44 (ddd, J ) 3.5, 3.8, 13.3
Hz, 2 H), 5.37 (t, J ) 5.6 Hz, 1 H); 13C NMR δ 14.00, 22.45,
24.64, 26.54, 28.77, 28.92, 31.47, 74.22 (2C), 108.21. Anal.
(C10H20O4) C, H.
3-Octyl-1,2,4,5-tetr oxoca n e 4k : an oil; 1H NMR δ 0.86 (t,
J ) 6.6 Hz, 3 H), 1.2-1.8 (m, 15 H), 2.6-2.8 (m, 1 H), 4.13
(ddd, J ) 2.9, 12.0, 12.0 Hz, 2 H), 4.43 (ddd, J ) 3.5, 3.5, 12.0
Hz, 2 H), 5.36 (t, J ) 5.8 Hz, 1 H); 13C NMR δ 14.07, 22.61,
24.71, 26.60, 28.79, 29.11, 29.26 (2 C), 31.79, 74.25 (2 C),
108.25. Anal. (C12H24O4) C, H.
(5) Saito, I.; Nagata, R.; Yuba, K.; Matuura, T. Synthesis of
R-silyloxyhydroperoxides from the reaction of silyl enol ethers.
Tetrahedron Lett. 1983, 24, 1737-1740.
(6) Ledaal, T.; Solbjoer, T. 1,1-Dihydroperoxycyclododecane. Acta
Chem. Scand. 1967, 21, 1658. See also: J efford, C. W.; Li, Y.;
J aber, A.; Boukouvalas, J . A new method for the synthesis of
gem-dihydroperoxides. Synth. Commun. 1990, 20, 2589-2596.
(7) (a) Dussault, P. H.; Sahli, A. 2-Methoxy-2-propyl hydroperox-
ide: a convenient reagent for the synthesis of hydroperoxides
and peracids. J . Org. Chem. 1992, 57, 2978. (b) Dussault, P. H.;
Zope, U. R. Diastereoselectivity of additions to chiral carbonyl
oxides. J . Org. Chem. 1995, 60, 8218-8222.
(8) (a) Bloodworth, A. J .; Eggelte, H. J . Prostaglandin endoperoxide
model compounds. part 2. stereospecific synthesis of isomeric
5-bromo-2,3-dioxabicyclo[2.2.1]heptanes
and
2-bromo-6,7-
dioxabicyclo[3.2.1]octanes. J . Chem. Soc., Perkin Trans. 1 1981,
3272-3278. (b) Adam, W.; Birke, A.; Cadiz, C.: Diaz, S.;
Rodoriguez, A. Prostanoid endoperoxide model compounds:
preparation of 1,2-dioxolanes from cyclopropanes. J . Org. Chem.
1978, 43, 1154-1158.
(9) Some of the synthetic endoperoxides have been found to be
superior to artemisinin in the activity.1e (a) Posner, G. H.;
Cumming, J . N.; Woo, S.-H.; Ploypradith, P.; Xie, S.; Shapiro,
T. A. Orally active antimalarial 3-substituted trioxanes: new
synthetic methodology and biological evaluation. J . Med. Chem.
1998, 41, 940-951. (b) Avery, M. A.; Mehrotra, S.; Bonk, J . D.;
Vroman, J . A.; Goins, D. K.; Miller, R. Structure-activity
relationships of the antimalarial agent artemisinin. 4. Effect of
substitution at C-3. J . Med. Chem. 1996, 39, 2900-2906. (c)
Wang, D.-Y.; Wu, Y.; Wu, Y.-L.; Li, Y.; Shan, F. Synthesis, iron-
(II)-induced cleavage and in vivo antimalarial efficacy of 10-(2-
hydroxy-1-naphthyl)-deoxoqinghaosu (-deoxoartemisinin). J .
Chem. Soc., Perkin Trans. 1 1999, 1827-1831. (d) O’Neill, P.
M.; Searle, N. L.; Kan, K.-W.; Storr, R. C.; Maggs, J . L.; Ward,
S. A.; Raynes, K.; Park, B. K. Novel, Potent, Semisynthetic
antimalarial carba analogues of the first-generation 1,2,4-
trioxane artemether. J . Med. Chem. 1999, 42, 5487-5493. (e)
Ma, J .; Weiss, E.; Kyle, D. E.; Ziffer, H. Acid-catalyzed Michael
additions to artemisitene. Bioorg. Med. Chem. Lett. 2000, 10,
1601-1603. (f) Bachi, M. D.; Korshin, E. E.; Hoos, R.; Szpilman
A. M. Synthesis and reactions of antimalarial bicyclic peroxides.
J . Heterocycl. Chem. 2000, 37, 639-646. (g) J efford, C. W.;
Burger, U.; Millasson-Schmidt, P.; Bernardinelli, G.; Robinson,
B. L.; Peters, W. Epiartemisinin, a remarkably poor antima-
larial: implications for the mode of action. Helv. Chim. Acta
2000, 83, 1239-1246 and the references therein.
In Vitr o a n d In Vivo An tim a la r ia l Activity. In vitro
antimalarial activity against P. falciparum (FCR-3 strain) and
cytotoxicity against mouse mammary cell (FM3A) was deter-
mined as described previously.3a In vivo antimalarial activity
was assessed using ICR mice infected with P. berghei (NK 65
strain) following the protocol described previously.3a Various
concentrations of the test compounds, prepared in olive oil,
were administered daily via two routes, either ip or po, to
groups of five mice for four consecutive days beginning on the
day of infection (to determine the ED value and survival time).
To determine the curative effect, the test compounds were
administered to the mice orally once a day for 3 consecutive
days beginning on the day of 1% parasitemia in the infected
mice. Parasitemia levels were monitored every day for 2
months. Treatment was considered to be curative when no
parasites were detected after 60 days. On average, mice in the
control group survived for 6.5 days after infection.
Ack n ow led gm en t. This work was supported in part
by a Grant-in-Aid for Scientific Research on Priority
Areas (08281105, 11147216, 11140244, 12307007, and
12217088) from the Ministry of Education, Science,
Culture and Sports of J apan.
(10) J anssen, D. E.; Wilson, C. V. Org. Synth. 1963, Coll. Vol. 4,
547-549.
J M010026G