Table 2 Comparison of yields of 1 + 2 and 3 in hydroformylation and isomerization of 1-hexene catalyzed with the Rh complex containing the
ligand VI, tris(p-trifluoromethyl phenyl) phosphine, in different solventsa
Concentration (mol Lꢁ1
)
Yield (%)
COb
1 + 2 (1/2)
3
b
Solvent
1-Hexene
Rh
H2
CO2 , 8 MPa
CO2 , 12 MPa
Toluene
0.318 (0.05)c
0.318 (0.03)c
2.27 (0.25)c
2.27
0.247 ꢀ 10ꢁ3 (4.0 ꢀ 10ꢁ5 c
)
0.761 (0.12)c
0.761 (0.12)c
67.2 (2.44)
62.2 (2.31)
80.4 (2.65)
71.6 (2.45)
77.2 (2.51)
0 (–)
20.1
16.5
14.5
–
0.247 ꢀ 10ꢁ3 (2.1 ꢀ 10ꢁ5 c
)
0.761 (0.06)c
0.761 (0.06)c
1.77 ꢀ 10ꢁ3 (1.9 ꢀ 10ꢁ4 c
)
0.032d (0.004)c
0.107d (0.012)c
Ethyl acetate
Hexane
NMP
1.77 ꢀ 10ꢁ3
1.77 ꢀ 10ꢁ3
1.77 ꢀ 10ꢁ3
–
–
–
–
–
–
2.27
2.27
–
–
a
b
Reaction conditions: 1-hexene/Rh ¼ 1280, syngas (H2/CO) 4 MPa, 333 K, time 2 h. Rough estimates based on van der Waals equations of
state for H2 and CO (ref. 17). c Mole fraction. The density of CO2 was obtained from ref. 18. d Estimates using Henry’s constants for H2 and CO
from ref. 19.
4
S. Fujita, K. Yuzawa, B. M. Bhanage, Y. Ikushima and M. Arai,
J. Mol. Catal. A: Chem., 2002, 180, 35.
Experimental
5
6
D. R. Palo and C. Erkey, Organometallics, 2000, 19, 81.
A. M. B. Osuna, W. Chen, E. G. Hope, R. D. W. Kemmitt, D. R.
Paige, A. M. Stuart, J. Xiao and L. Xu, J. Chem. Soc., Dalton
Trans., 2000, 4052.
D. Koch and W. Leitner, J. Am. Chem. Soc., 1998, 120, 13 398.
I. Bach and D. J. Cole-Hamilton, Chem. Commun., 1998, 1463.
D. R. Palo and C. Erkey, Ind. Eng. Chem. Res., 1998, 37, 4203.
Seven phosphine compounds, as shown in Scheme 1, were used
as ligands, of which the ligand VI was purchased from Strem
and the others from Aldrich. These were used without further
purification.
7
8
9
Hydroformylation experiments were conducted batchwise in
a 50 cm3 high-pressure stainless steel reactor with a magnetic
stirrer, a high-pressure liquid pump, and a back-pressure reg-
ulator.4,20 The reactor was charged with 1-hexene, Rh(acac)-
(CO)2 (both from Wako), and a phosphine ligand and heated
to a reaction temperature of 333 K using a water bath. Then
syngas (H2 : CO ¼ 1:1) was charged into the reactor to a cer-
tain pressure (4 MPa in many cases) followed by introduction
of liquid CO2 . The reaction was continued for 2 h. After the
reaction, the reactor was cooled by ice water to near room temp-
erature and depressurized with the back-pressure regulator.
The reaction mixture was analyzed by a gas chromatograph
packed with a capillary column using a flame ionization detec-
tor and a mass spectrometer.
10 T. Davis and C. Erkey, Ind. Eng. Chem. Res., 2000, 39, 3671.
11 G. Francio, K. Wittmann and W. Leitner, J. Organomet. Chem.,
2001, 621, 130; D. R. Palo and C. Erkey, Ind. Eng. Chem. Res.,
1999, 38, 3786; G. Francio and W. Leitner, Chem. Commun.,
1999, 1663; I. T. Horvath, G. Kiss, R. A. Cook, J. E. Bond,
P. A. Stevens, J. Rabai and E. J. Mozeleski, J. Am. Chem. Soc.,
1998, 120, 3133; S. Kainz, D. Koch, W. Baumann and W. Leitner,
Angew. Chem., Int. Ed. Engl., 1997, 36, 1628.
12 K. Wittmann, W. Wisniewski, R. Mynott, W. Leitner, C. L. Kra-
nemann, T. Rische, P. Eilbacht, S. Kluwer, J. M. Ernsting and
C. J. Elsevier, Chem.-Eur. J., 2001, 7, 4584; B. Guzel, M. A.
Omary, J. P. Fackler, Jr. and A. Akgerman, Inorg. Chim. Acta,
2001, 325, 45; Y. Guo and A. Akgerman, Ind. Eng. Chem. Res.,
1997, 36, 4581; J. W. Rathke, R. J. Klingler and T. R. Krause,
Organometallics, 1991, 10, 1350.
The phase behavior was examined with a 10 cm3 high-pres-
sure stainless steal reactor with sapphire windows and a mag-
netic stirrer. The reactor was charged with 1-hexene
(3.18 ꢀ 10ꢁ3 mol), Rh(acac)(CO)2 (2.48 ꢀ 10ꢁ6 mol), and a
phosphine ligand (9.92 ꢀ 10ꢁ6 mol) and heated to 333 K,
which was controlled with a heated oil circulating system.
Then the syngas was charged into the reactor and pressurized
by introducing liquid CO2 to a given pressure. The mixture in
the reactor was examined by the naked eye and also recorded
on a video recorder.
13 G. Snyder, A Tadd and M. A. Abraham, Ind. Eng. Chem. Res.,
2001, 40, 5317; S. Dharmidhikari and M. A. Abraham, J. Super-
crit. Fluids, 2000, 18, 1; M. S. Sellin and D. J. Cole-Hamilton,
J. Chem. Soc., Dalton Trans., 2000, 1681.
14 J. B. Ellington and J. F. Brennecke, J. Chem. Soc., Chem. Com-
mun., 1993, 1094; J. F. Brennecke, in Supercritical Engineering
Science. Fundamental Studies and Applications, eds. E. Kiran and
J. F. Brennecke, American Chemical Society, Washington, DC,
1993, p. 201; A. A. Clifford, in Supercritical Fluids: Fundamentals
for Applications, eds. E. Kiran and J. M. H. L. Sengers, NATO
ASI Series, Kluwer, Dordrecht, The Netherlands, 1994, p. 449;
P. E. Savage, S. Golapan, T. I. Mizan, C. J. Martino and E. E.
Brock, AIChE J., 1995, 41, 1723; Y. Ikushima, N. Saito, M. Arai
and H. W. Blanch, J. Phys. Chem., 1995, 99, 8941; Y. Ikushima,
N. Saito and M. Arai, J. Chem. Eng. Jpn., 1996, 29, 551; T. Sasa-
kura, Y. Saito, M. Okano, J. C. Choi and T. Sako, J. Org. Chem.,
2000, 63, 7095; H. Kawanami and Y. Ikushima, Chem. Commun.,
2000, 2089; S. Fujita, B. M. Bhanage, Y. Ikushima and M. Arai,
Green Chem., 2001, 3, 87.
The Rh complexes in scCO2 were examined with an in situ
FTIR using a 1.5 cm3 high-pressure cell with a path length
of
4 mm. The cell was charged with Rh(acac)(CO)2
(3.88 ꢀ 10ꢁ6 mol) and phosphine ligand (1.55 ꢀ 10ꢁ5 mol) fol-
lowed by introduction of the syngas (0.1 MPa) and liquid CO2
(14 MPa). The FTIR measurements were made at 333 K.
15 J. B. Ellington, K. M. Park and J. F. Brennecke, Ind. Eng. Chem.
Res., 1994, 33, 965; J. F. Brennecke, D. L. Tomasko, J. Peshkin
and C. A. Eckert, Ind. Eng. Chem. Res., 1990, 29, 1682; A. A.
Chialvo and P. G. Debenedetti, Ind. Eng. Chem. Res., 1992, 31,
1391; C. A. Eckert and B. L. Knutson, Fluid Phase Equilib.,
1993, 83, 93; T. W. Randolph, D. S. Clark, H. W. Blanch and
J. M. Prausnitz, Science, 1988, 239, 387; S. Kim and K. P. John-
ston, Ind. Eng. Chem. Res., 1987, 26, 1206.
16 K. Nakanishi, P. H. Solomon, Infrared Absorption Spectroscopy,
Holden-Day, San Francisco, CA, 2nd edn., 1977.
17 W. J. Moore, Physical Chemistry, Prentice-Hall, Englewood
Cliffs, NJ, 3rd edn., 1962.
18 T. Moriyoshi, T. Kita and Y. Uosaki, Ber. Bunsen-Ges. Phys.
Chem., 1993, 97, 589.
19 B. M. Bhanage, S. S. Divekar, R. M. Deshpande and R. V.
Chaudhari, J. Mol. Catal. A: Chem., 1997, 115, 247.
20 B. M. Bhanage, Y. Ikushima, M. Shirai and M. Arai, High Pres-
sure Res., 2001, 20, 131.
References
1
Chemical Synthesis Using Supercritical Fluids, eds. P. G. Jessop
and W. Leitner, Wiley-VCH, Weinheim, 1999; P. G. Jessop,
T. Ikariya and R. Noyori, Chem. Rev., 1999, 99, 475; W. Tumas,
in Proceedings of the 5th International Symposium on Supercritical
Fluids, Atlanta, USA, 2000; R. S. Oakes, A. A. Clifford and C. M.
Rayner, J. Chem. Soc., Perkin Trans. 1, 2001, 917; B. M. Bhanage
and M. Arai, Catal. Rev. Sci. Eng., 2001, 43, 315.
2
3
Applied Homogeneous Catalysis with Organometallic Compounds,
eds. B. Cornils and W. A. Herrmann, Wiley-VCH, Weinheim,
2000; Metal-catalyzed Cross-coupling Reactions, eds. F. Dietrich
and P. J. Stang, Wiley-VCH, Weinheim, 1998; W. A. Herrmann
and B. Cornils, Angew. Chem., Int. Ed. Engl., 1997, 36, 1048.
K.-D. Wagner, N. Dahmen and E. Dinjus, J. Chem. Eng. Data,
2000, 45, 672.
1484
New J. Chem., 2002, 26, 1479–1484