Journal of the American Chemical Society
Page 4 of 5
Jordan, A. J.; Lalic, G.; Sadighi, J. P. Coinage Metal Hydrides: Synthesis,
Characterization, and Reactivity. Chem. Rev. 2016, 116. 8318.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/jacs.9b#####.
Experimental procedure, NMR and ESI mass spectra, Tables for
catalytic FA decomposition, DFT optimized structures (PDF).
Crystallographic data for 6a,b and 8.
1
2
3
4
5
6
7
8
(5) (a) Motokura, K.; Kashiwame, D.; Takahashi, N.; Miyaji, A.; Baba,
T. Highly Active and Selective Catalysis of Copper Diphosphine
Complexes for the Transformation of Carbon Dioxide into Silyl Formate.
Chem. Eur. J. 2013, 19, 10030. (b) Zhang, L.; Cheng, J.; Hou, Z. Highly
efficient catalytic hydrosilylation of carbon dioxide by an N-heterocyclic
carbene copper catalyst. Chem. Commun. 2013, 49, 4782. (c) Shintani, R.;
Nozaki, K. Copper-Catalyzed Hydroboration of Carbon Dioxide.
Organometallics 2013, 32, 2459. (d) Zall, C. M.; Linehan, J. C.; Appel, A.
M. Triphosphine-Ligated Copper Hydrides for CO2 Hydrogenation:
Structure, Reactivity, and Thermodynamic Studies. J. Am. Chem. Soc. 2016,
138, 9968. (e) Jordan, A. J.; Wyss, C. M.; Bacsa, J.; Sadighi, J. P. Synthesis
and Reactivity of New Copper(I) Hydride Dimers. Organometallics 2006,
35, 613. (f) Zall, C. M.; Linehan, J. C.; Appel, A. M. A Molecular Copper
Catalyst for Hydrogenation of CO2 to Formate. ACS Catal. 2015, 5, 5301.
(g) Watari, R.; Kayaki, Y.; Hirano, S.; Matsumoto, N.; Ikariya, T.
Hydrogenation of Carbon Dioxide to Formate Catalyzed by a Copper/1,8-
Diazabicyclo[5.4.0]undec-7-ene System. Watari, R.; Kayaki, Y.; Hirano,
S.; Matsumoto, N.; Ikariya, T.; Adv. Synth. Catal. 2015, 357, 1369.
(6) (a) Churchill, M. R.; Bezman, S. A.; Osborn, J. A.; Wordmald, J.
9
AUTHOR INFORMATION
Corresponding Authors
*t.nakajima@cc.nara-wu.ac.jp
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ORCID
Takayuki Nakajima: 0000-0003-3884-9205
Kanako Nakamae: 0000-0002-4256-9305
Yasuyuki Ura: 0000-0003-0484-1299
Tomoaki Tanase: 0000-0003-1838-0112
Synthesis
and
Molecular
Geometry
of
Hexameric
Triphenylphosphinocopper(1) Hydride and the Crystal Structure of
H6Cu6(PPh3)6 HCONMe. Inorg. Chem. 1972, 11, 1818. (b) Stevens, R. C.;
McLean, M. R.; Bau, R. Neutron Diffraction Structure Analysis of a
Hexanuclear Copper Hydride Complex, H6Cu6[P(p-tolyl)3]6: An
Unexpected Finding. J. Am. Chem. Soc. 1989, 111, 3472. (c) Goeden, G.
V.; Caulton, K. G. Soluble Copper Hydrides: Solution Behavior and
Reactions Related to CO Hydrogenation. J. Am. Chem. Soc. 1981, 103,
7354. (d) Lemmen. T. H.; Folting, K.; Huffman, J. C.; Caulton, K. G.
Copper Polyhydrides. J. Am. Chem. Soc. 1985, 107, 7774. (e) Albert, C. F.;
Healy, P. C.; Kildea, J. D.; Raston, C. L.; Skelton, B. W.; White, A. H.
Lewis-Base Adducts of Group 11 Metal(1) Compounds. 49. Structural
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported by a Grant-in-Aid for Scientific
Research (no. 18H03914) and on Priority Area 2107 (no.
22108521, 24108727) and 2802 (no. 17H05374, 19H04582)
from the Ministry of Education, Culture, Sports, Science and
Technology, Japan. The computations were performed using
Research Center for Computational Science, Okazaki, Japan.
The authors thank Prof. Kohtaro Osakada of Tokyo Institute of
Technology for help in MS spectral measurements.
Characterization
of
Hexameric
and
Pentameric
(Tripheny1phosphine)copper (I) Hydrides. Inorg. Chem. 1989, 28, 1300. (f)
Eberhart, M. S.; Norton, J. R.; Zuzek, A.; Sattler, W.; Ruccolo, S. Electron
Transfer from Hexameric Copper Hydrides. J. Am. Chem. Soc. 2013, 135,
17262. (g) Nguyen, T.-A. D.; Goldsmith, B. R.; Zaman, H. T.; Wu, G.;
Peters, B.; Hayton, T. W. Synthesis and Characterization of a Cu14 Hydride
Cluster Supported by Neutral Donor Ligands. Chem. Eur. J. 2015, 21, 5341.
(h) Nguyen, T.-A. D.; Jones, Z. R.; Goldsmith, B. R.; Buratto, W. R.; Wu,
G.; Scott, S. L.; Hayton, T. W. A Cu25 Nanocluster with Partial Cu(0)
Character. J. Am. Chem. Soc. 2015, 137, 13319.
(7) (a) Jordan, A. J.; Lalic, G.; Sadighi, J. P. Coinage Metal Hydrides:
Synthesis, Characterization, and Reactivity. Chem. Rev. 2016, 116, 8318.
(b) Dhayal, R. S.; van Zyl, W. E.; Liu, C. W. Copper hydride clusters in
energy storage and conversion. Dalton Trans, 2019, 48, 3531. (c) Cook, A.
W.; Nguyen, T.-A. D.; Buratto, W. R.; Wu, G.; Hayton, T. W. Synthesis,
Characterization, and Reactivity of the Group 11 Hydride Clusters
[Ag6H4(dppm)4(OAc)2] and [Cu3H(dppm)3(OAc)2]. Inorg. Chem. 2016, 55,
12435. (d) Mao, Z.; Huang, J.-S.; Che, C.-M.; Zhu, N.; Leung, S. K.-Y.;
Zhou, Z.-Y. Unexpected Reactivities of Cu2(diphosphine)2 Complexes in
Alcohol: Isolation, X-ray Crystal Structure, and Photoluminescent
Properties of a Remarkably Stable [Cu3(diphosphine)3(3H)]2+ Hydride
Complex. J. Am. Chem. Soc. 2005, 127, 4562. (e) Li, J.; White, J. M.;
Mulder, R. J.; Reid, G. E.; Donnelly, P. S.; O’Hair, R. A. J. Synthesis,
Structural Characterization, and Gas-Phase Unimolecular Reactivity of
REFERENCES
(1) For recent review, see: (a) Sordakis, K.; Tang, C.; Vogt, L. K.; Junge,
H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Homogeneous Catalysis for
Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chem. Rev.
2018, 118, 372. (b) Onishi, N.; Laurenczy, G.; Beller, M.; Himeda, Y.
Recent progress for reversible homogeneous catalytic hydrogen storage in
formic acid and in methanol. Coord. Chem. Rev. 2018, 373, 317. (c)
Mellmann, D.; Sponholz, P.; Junge, H.; Beller, M. Formic Acid as a
Hydrogen Storage Material–Development of Homogeneous Catalysts for
Selective Hydrogen Release. Chem. Soc. Rev. 2016, 45, 3954. (d) Wang,
W.-H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2
Hydrogenation to Formate and Methanol as an Alternative to Photo- and
Electrochemical CO2 Reduction. Chem. Rev. 2015, 115, 12936.
(2) Scotti, N.; Psaro, R.; Ravasio, N.; Zaccheria, F. A New Cu-based
System for Formic Acid Dehydrogenation. RSC Adv. 2014, 4, 61514.
(3) (a) Zavras, A.; Krstić, M.; Dugourd, P.; Bonačić-Koutecký, V.;
O’Hair, R. A. Selectivity Effects in Bimetallic Catalysis: Role of the Metal
Sites in the Decomposition of Formic Acid into H2 and CO2 by the Coinage
Metal Binuclear Complexes [dppmMM’(H)]+. ChemCatChem 2017, 9,
1298. (b) Krstić, M.; Jin, Q.; Khairallah, G. N.; O’Hair, R. A.; Bonačić-
Koutecký, V. How to Translate the [LCu2(H)]+-Catalysed Selective
Decomposition of Formic Acid into H2 and CO2 from the Gas Phase into a
Zeolite. ChemCatChem 2018, 10, 1173.
Bis(diphenylphosphino)amino
Copper
Hydride
Nanoclusters
[Cu3(X)(μ3H)((PPh2)2NH)3](BF4), Where X = μ2Cl and μ3BH4. Inorg.
Chem. 2016, 55, 9858. (f) Ma, H. Z.; Li, J.; Canty, A. J.; O’Hair, R. A. J.
Cluster transformation of [Cu3(μ3H)(μ3BH4)((PPh2)2NH)3](BF4) to
[Cu3(μ3H)(μ2,μ1S2CH)((PPh2)2NH)3](BF4) via reaction with CS2. X-ray
structural characterization and reactivity of cationic clusters explored by
multistage mass spectrometry and computational studies. Dalton Trans.
2017, 46, 14995.
(8) Nakamae, K.; Tanaka, M.; Kure, B.; Nakajima, T.; Ura, Y.; Tanase,
T.
A Fluxional Cu8H6 Cluster Supported by Bis(diphenylphos-
phino)methane and Its Facile Reaction with CO2. Chem. Eur. J. 2017, 23,
9457.
(4) For recent review, see: (a) Deutsch, C.; Krause, K.; Lipshutz, B. H.
CuH-Catalyzed Reactions. Chem. Rev. 2008, 108, 2916. (b) Dhayal, R. S.;
van Zyl, W. E.; Liu, C. Polyhydride Copper Clusters: Synthetic Advances,
Structural Diversity, and Nanocluster-to-Nanoparticle Conversion. Acc.
Chem. Res. 2016, 49, 86. (c) Riant, O. Copper(I) hydride reagents and
catalysts, in The Chemistry of Organocopper Compounds. Z. Rappoport, I.
Marek, Eds., John Wiley & Sons, West Sussex, England, 2009, p. 731. (d)
(9) Nakamae, K.; Kure, B.; Nakajima, T.; Ura, Y.; Tanase, T. Facile
Insertion of Carbon Dioxide into Cu2(H) Dinuclear Units Supported by
Tetraphosphine Ligands. Chem. Asian J. 2014, 9, 3106-3110.
(10) Nakajima, T.; Kamiryo, Y.; Hachiken, K.; Nakamae, K.; Ura, Y.;
Tanase, T. Tri- and Tetranuclear Copper Hydride Complexes Supported by
Tetradentate Phosphine Ligands. Inorg. Chem. 2018, 57, 11005.
ACS Paragon Plus Environment