4286
K. Mori et al. / Tetrahedron Letters 46 (2005) 4283–4286
reaction of mercaptans with chalcone derivatives, but it
Acknowledgments
was found to be less effective under the present reaction
conditions, see: Zahouily, M.; Abrouki, Y.; Bahlaouan,
B.; Rayadh, A.; Sebti, S. Catal. Commun. 2003, 4, 521.
8. Into a reaction vesselequipped with a reflux condenser
This work is supported by the Grant-in-Aid for Scien-
tific Research from Ministry of Education, Culture,
Sports, Science, and Technology of Japan (16206078).
K.M. and T.H. also express special thanks for the JSPS
Research Fellowships for Young Scientists.
were successively placed the LaHAP (0.03 g, La3+
:
0.02 mol%), H 2O (20 ml), 1a (25 mmol), and 2a
(37.5 mmol). The reaction mixture was stirred at 80 ꢁC
under an Ar atmosphere for 12 h. After separation of the
catalyst, the aqueous layer was extracted with Et2 O and
organic solvent was dried with MgSO4. The solvent was
evaporated and the crude product was distilled to afford
pure ethyl 2-oxo-1-(3-oxobutyl)cyclopentanecarboxylate
as a colorless oil (90% isolated yield).
References and notes
1. (a) Jung, M. E. In Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991;
Vol. 4, pp 1–67; (b) Ho, T.-L. Tactics of Organic Synthesis;
Wiley: New York, 1994.
9. Tateiwa, J.-I.; Hosomi, A. Eur. J. Org. Chem. 2001,
1445.
10. Because of the weak Lewis acidity of the La3+ ion,
homogeneous La(OR)3 complexes often act as a Brønsted
base and catalyze a number of carbonyl reactions involv-
ing an enolate intermediate, see: (a) Sasai, H.; Suzuki, T.;
Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. 1992,
114, 4418; (b) Sasai, H.; Arai, T.; Shibasaki, M. J. Am.
Chem. Soc. 1994, 116, 1571; (c) Dewa, T.; Saiki, T.;
Aoyama, Y. J. Am. Chem. Soc. 2001, 123, 502.
2. For an excellent review on transition metal-catalyzed
Michaelreaction of 1,3-dicarbonysl, see: Christoffers, J.
Eur. J. Org. Chem. 1998, 1259.
3. For examples of the Michael reaction in water, see: (a)
Keller, E.; Feringa, B. L. Tetrahedron Lett. 1996, 37, 1879;
(b) Kotsuki, H.; Arimura, K. Tetrahedron Lett. 1997, 38,
7583; (c) Mori, Y.; Kakumoto, K.; Manabe, K.; Koba-
yashi, S. Tetrahedron Lett. 2000, 41, 3107.
11. Kawabata, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J.
Am. Chem. Soc. 2003, 125, 10486.
4. (a) Cave, G. W. V.; Raston, C. L.; Scott, J. L. Chem.
Commun. 2001, 2159; (b) Organic Synthesis in Water;
Grieco, P. A., Ed.; Blackie Academic and Professional:
London, 1998.
12. The kinetic results are in sharp contrast to those of
homogeneous La(OTf)3 catalysts, which follow first-order
dependence in 1a and zero-order relationship in 2a. We
believe this phenomenon can be attributed to strong
Brønsted basicity of the LaHAP catalyst.
13. For generalreviews of catayltic asymmetric Michael
reactions, see: (a) Comprehensive Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
Springer: Berlin, 1999; (b) Krause, N.; Hoffmann-Ro¨der,
A. Synthesis 2001, 171; (c) Sibi, M. P.; Manyem, S.
Tetrahedron 2000, 56, 8033.
5. (a) Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.;
Kaneda, K. J. Am. Chem. Soc. 2000, 122, 7144; (b) Mori,
K.; Yamaguchi, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K.
Chem. Commun. 2001, 461; (c) Mori, K.; Tano, M.;
Mizugaki, T.; Ebitani, K.; Kaneda, K. New J. Chem. 2002,
26, 1536; (d) Mori, K.; Yamaguchi, K.; Hara, T.;
Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem.
Soc. 2002, 124, 11572; (e) Murata, M.; Hara, T.; Mori, K.;
Ooe, M.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Tetrahe-
dron Lett. 2003, 44, 4981; (f) Hara, T.; Mori, K.;
Mizugaki, T.; Ebitani, K.; Kaneda, K. Tetrahedron Lett.
2003, 44, 6207; (g) Mori, K.; Hara, T.; Mizugaki, T.;
Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2003, 125,
11460; (h) Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.;
Kaneda, K. J. Am. Chem. Soc. 2004, 126, 10657; (i) Hara,
T.; Mori, K.; Oshiba, M.; Mizugaki, T.; Ebitani, K.;
Kaneda, K. Green Chem. 2004, 6, 507.
14. Into a reaction vessel were successively placed the TA-
LaFAP (0.016 g, La3+: 1.2 mol %), toluene (2 ml), 1g
(0.5 mmol), and 2a (0.75 mmol). The reaction mixture was
stirred at room temperature under an Ar atmosphere for
6 h. After removalof the catalyst, the reaction mixture was
diluted with toluene and subjected to HPLC analysis. The
enantiomeric excess was determined by chiralHPLC
(Daisel Chiralpak AD-H, eluent: iPrOH/hexane = 1:9,
flow rate: 1.0 ml/min, 254 nm, tR of (S)-3a = 12.0 min, tR
of (R)-3a = 13.5 min). The absolute configuration was
6. For recent reviews of heterogeneous asymmetric catalysts,
see: (a) McMorn, P.; Hutchings, G. J. Chem. Soc. Rev.
2004, 33, 108; (b) Fan, Q.-H.; Li, Y.-M.; Albert, A. S. C.
Chem. Rev. 2002, 102, 3385; (c) Song, C. E.; Lee, S.-G.
Chem. Rev. 2002, 102, 3495.
25
determined by the opticalrotation of 3a ½aꢁD ꢀ41.8 (c
rt
0.24, benzene) for 60% ee, cf.: ½aꢁ578 ꢀ77.0 (c 2.0, benzene)
for (S)-isomer. Preparation of the TA-LaFAP was accom-
plished as follows. To a stirred aqueous solution of 1:1 of
La(OTf)3 and (R,R)-tartaric acid for 30 min was added a
fluoroapatite (FAP), Ca10(PO4)6F2, and then the mixture
was further reacted at 30 ꢁC for 24 h, affording the TA-
LaFAP (La content: 0.36 mmolg ꢀ1) as a white powder.
The ratio of La:TA was determined to be ca. 6:1 by the
CHN elemental analysis.
7. The order of activity of various catalysts for Michael
reaction conducted under the identicalreaction conditions
as those for entry
1
in Table
1
was LaHAP
(>99) > ScHAP (90) > YHAP (67) > La(OTf)3 (40) >
YbHAP (39) > HAP (30), where values in parentheses
indicate yields of Michael adducts. The parent HAP is
reported to act as a heterogeneous catalyst for the Michael