Organic Letters
Letter
reaction conditions (Scheme 5B).23 While conversion to
boronate 15 (8 ppm) proceeded as before, the addition of
magnesium bromide etherate led to the formation of borinic
ester 16, identified by a characteristic 11B NMR chemical shift
at 50 ppm. In this case, the cyclopropane was not activated
through coordination of the carbonyl oxygen to the Lewis acid.
Instead, the Lewis acid interacted with the pinacol group and
cleavage of an oxygen−boron bond occurred.24 We reasoned
that the malonate moiety in 12 could act as a bidentate ligand,
promoting complexation of the Lewis acid and thereby 1,2-
metalate rearrangement. We therefore investigated an alter-
native malonate without the cyclopropyl moiety to see if a
related 1,2-metalate rearrangement could occur (Scheme 5C).
However, boronic ester 17 (32 ppm), with an open chain
structure and two ester groups,25 also gave a borinic ester (19,
50 ppm) as the reaction product (Scheme 5C). These results
demonstrate that both strain release and the presence of two
ester groups are necessary to drive the 1,2-metalate rearrange-
ment. Without either structural feature, borinic ester formation
dominates completely.26
In conclusion, we have developed an enantiospecific
coupling reaction between an organolithium reagent and an
enantioenriched cyclopropyl boronic ester. The reaction
proceeds via a boronate complex with an activated cyclo-
propane in the α position. It was shown that both strain in the
cyclopropane and the presence of two ester groups in the β
position are essential for 1,2-metalate rearrangement to occur.
This method provides efficient access to synthetically useful,
enantioenriched γ-carbonyl boronic esters in moderate to
excellent yield with complete enantiospecificity.
1980, 102, 7588−7590. (c) Sadhu, K. M.; Matteson, D. S.
Organometallics 1985, 4, 1687−1689.
(5) Sonawane, R. P.; Jheengut, V.; Rabalakos, C.; Larouche-
Gauthier, R.; Scott, H. K.; Aggarwal, V. K. Angew. Chem., Int. Ed.
2011, 50, 3760−3763.
(6) (a) Hoppe, D.; Hintze, F. Angew. Chem., Int. Ed. Engl. 1997, 36,
2282−2316. (b) Beckmann, E.; Desai, V.; Hoppe, D. Synlett 2004,
2275−2280.
(7) Larouche-Gauthier, R.; Fletcher, C. J.; Couto, I.; Aggarwal, V. K.
Chem. Commun. 2011, 47, 12592−12594.
(8) (a) He, Z.; Song, F.; Sun, H.; Huang, Y. J. Am. Chem. Soc. 2018,
140, 2693−2699. (b) Armstrong, R. J.; Sandford, C.; García-Ruiz, C.;
Aggarwal, V. K. Chem. Commun. 2017, 53, 4922−4925.
(9) (a) Zweifel, G.; Arzoumanian, H.; Whitney, C. C. J. Am. Chem.
Soc. 1967, 89, 3652−3653. (b) Armstrong, R. J.; Niwetarin, W.;
Aggarwal, V. K. Org. Lett. 2017, 19, 2762−2765. (c) Armstrong, R. J.;
Aggarwal, V. K. Synthesis 2017, 49, 3323−3336.
(10) (a) Vedrenne, E.; Wallner, O. A.; Vitale, M.; Schmidt, F.;
Aggarwal, V. K. Org. Lett. 2009, 11, 165−168. (b) Schmidt, F.; Keller,
F.; Vedrenne, E.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2009, 48,
1149−1152. (c) Casoni, G.; Myers, E. L.; Aggarwal, V. K. Synthesis
2016, 48, 3241−3253. (d) Fawcett, A.; Murtaza, A.; Gregson, C. H.
U.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 4573.
(11) Fawcett, A.; Biberger, T.; Aggarwal, V. K. Nat. Chem. 2009, 11,
117−122.
(12) For selected reviews on the chemistry of donor−acceptor
cyclopropanes see: (a) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003,
103, 1151−1196. (b) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61,
321−347. (c) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem.,
Int. Ed. 2014, 53, 5504−5523. (d) Cavitt, M. A.; Phun, L. H.; France,
S. Chem. Soc. Rev. 2014, 43, 804−818.
(13) For selected reports on stereospecific nucleophilic ring opening
of donor−acceptor cyclopropanes see: (a) Lifchits, O.; Alberico, D.;
Zakharian, I.; Charette, A. B. J. Org. Chem. 2008, 73, 6838−6840.
(b) Lifchits, O.; Charette, A. B. Org. Lett. 2008, 10, 2809−2812.
(c) Emmett, M. R.; Grover, H. K.; Kerr, M. A. J. Org. Chem. 2012, 77,
6634−6637. (d) So, S. S.; Auvil, T. J.; Garza, V. J.; Mattson, A. E. Org.
Lett. 2012, 14, 444−447. (e) Garve, L. K. B.; Jones, P. G.; Werz, D. B.
Angew. Chem., Int. Ed. 2017, 56, 9226−9230. (f) Wallbaum, J.; Garve,
L. K. B.; Jones, P. G.; Werz, D. B. Org. Lett. 2017, 19, 98−101.
(g) Das, S.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2017,
56, 11554−11558. (h) Das, S.; Daniliuc, C. G.; Studer, A. Angew.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
General procedures, characterization data, and copies of
NMR spectra for all novel compounds (PDF)
́
Chem., Int. Ed. 2018, 57, 4053−4057. (i) Richmond, E.; Vukovic, V.
AUTHOR INFORMATION
Corresponding Author
D.; Moran, J. Org. Lett. 2018, 20, 574−577. (j) Díaz, W.; Reyes, A.;
Uria, U.; Carrillo, L.; Tejero, T.; Merino, P.; Vicario, J. L. Chem. - Eur.
J. 2018, 24, 8764−8768. (k) Singh, K.; Bera, T.; Jaiswal, V.; Biswas,
S.; Mondal, B.; Das, D.; Saha, J. J. Org. Chem. 2019, 84, 710−725.
(14) For reported syntheses of highly enantioenriched γ-carbonyl
boronic esters see: (a) Moran, W. J.; Morken, J. P. Org. Lett. 2006, 8,
2413−2415. (b) Larouche-Gauthier, R.; Elford, T. G.; Aggarwal, V. K.
J. Am. Chem. Soc. 2011, 133, 16794−16797. (c) Lovinger, G. L.;
Aparece, M. D.; Morken, J. P. J. Am. Chem. Soc. 2017, 139, 3153−
3160.
■
ORCID
Notes
The authors declare no competing financial interest.
(15) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2003,
125, 7198−7199.
ACKNOWLEDGMENTS
We thank H2020 ERC (670668) for financial support. We
thank Dr A. Noble for useful discussions.
■
(16) For other examples of asymmetric borylation of cyclopropenes
see: (a) Parra, A.; Amenos, L.; Guisan-Ceinos, M.; Lopez, A.; García
Ruano, J. L.; Tortosa, M. J. Am. Chem. Soc. 2014, 136, 15833−15836.
(b) Tian, B.; Liu, Q.; Tong, X.; Tian, P.; Lin, G.-Q. Org. Chem. Front.
2014, 1, 1116−1122. (c) Edwards, A.; Rubina, M.; Rubin, M. Chem. -
Eur. J. 2018, 24, 1394−1403.
REFERENCES
■
(1) Sandford, C.; Aggarwal, V. K. Chem. Commun. 2017, 53, 5481−
5494.
(17) The transformation was tested with the diethyl ester analogue
of boronic ester 3. With the addition of PhLi (1.1 equiv) at −98 °C
(methanol/liquid nitrogen) followed by MgBr2·Et2O (1.5 equiv), the
desired product was obtained in 35% NMR yield. See SI for further
details.
(18) Zhao, S.; Gensch, T.; Murray, B.; Niemeyer, Z. L.; Sigman, M.
S.; Biscoe, M. R. Science 2018, 362, 670−674.
(2) Leonori, D.; Aggarwal, V. K. Acc. Chem. Res. 2014, 47, 3174−
3183.
(3) Balieu, S.; Hallett, G. E.; Burns, M.; Bootwicha, T.; Studley, J.;
Aggarwal, V. K. J. Am. Chem. Soc. 2015, 137, 4398−4403.
(4) (a) Matteson, D. S.; Mah, R. W. H. J. Am. Chem. Soc. 1963, 85,
2599−2603. (b) Matteson, D. S.; Majumdar, D. J. Am. Chem. Soc.
D
Org. Lett. XXXX, XXX, XXX−XXX