214
A. Elmali et al. / Journal of Molecular Structure 510 (1999) 207–214
Coordination Chemistry, 2, Pergamon, Oxford, 1987, pp.
715–738, G. Wilkinson (Series Ed.).
[2] E. Hadjoudis, M. Vitterakis, I. Moustakali, I. Mavridis, Tetra-
hedron 43 (1987) 1345–1360.
[3] M. Hoshino, T. Inabe, T. Mitani, Y. Maruyama, Bull. Chem.
Soc. Jpn. 61 (1988) 4207–4214.
[4] G.M.J. Schmidt, L. Leiserowitz, J. Bregman, J. Chem. Soc.
(1964) 2068.
[5] A. Elmali, Y. Elerman, C.T. Zeyrek, J. Mol. Struc. 443 (1998)
123–130.
[6] A. Elmali, Y. Elerman, J. Mol. Struc. 422 (1998) 31–37.
[7] G.M. Sheldrick, SHELXS86, Acta Cryst. A46 (1990) 347–
350.
repulsive in the planar conformation but is reduced with
increasing non-planarity, and (2) the p-electron system,
itself divisible into two components, including, on the
one hand, delocalization between the –CHyN– double
bond and the aniline phenyl ring (which is maximised
for a planar conformation) and, on the other hand, delo-
calisation of the nitrogen lone pair electrons into the
aniline ring which is essentially zero for the planar
conformation but increases with increasing non-
planarity (where the lone pair density on the nitrogen
may interact with the p systems of the ring).
[8] G.M. Sheldrick, SHELX97, Program for the Refinement of
In summary, although the molecule is nearly
planar, the AM1 optimized geometry of the purged
crystal structure is non-planar in conformation. The
non-planar conformation corresponding to the AM1
optimized X-ray structure is the most stable confor-
mation in all considered calculations. The optimized
geometries show that the dihedral angle between
A(O1, C1–C7) and B(N1,O2,Cl1,C8–C13) planes
are 24.7 and 21.4Њ in keto and enol forms, respec-
tively. Because the AM1 method does not appreciate
the intra- and intermolecular hydrogen bond interac-
tions, the planarity of the single molecule decreases in
the AM1 calculations. Therefore the enol form has the
lowest heat of formation than the keto form of the
isolated moelcule. The theoretical results strongly indi-
catethatthemoststableconformationisprimarilydeter-
mined by non-bonded hydrogen–hydrogen repulsion.
¨
Crystal Structures, University of Gottingen, Germany, 1997.
[9] H.D. Flack, Acta Cryst. A39 (1983) 876–881.
[10] M.J.S. Dewar, E.G. Zeobisch, E.F. Healy, J.J.P. Stewart, AM1
a new general purpose quantum mechanical molecular model,
J. Am. Chem. Soc. 107 (1985) 3902–3909.
[11] J.P. Stewart, MOPAC Version 6.0, Quantum Chemistry
Program Exchange 581, Indiana University, USA, 1989.
[12] R. Fletcher, M.J.D. Powell, Comput. J. 6 (1963) 163–176.
[13] W.C. Davidson, Comput. J. 10 (1968) 406–413.
[14] C.K. Johnson, ORTEPII, Report ORNL-5138, Oak Ridge
National Laboratory, TN, USA, 1976.
[15] A.L. Spek, Pluton92, Molecular Graphics Program, University
of Utrecht, The Netherlands, 1992.
[16] A. Bondi, J. Phys. Chem. 68 (1964) 441–451.
[17] Y. Elerman, M. Kabak, A. Elmali, I. Svoboda, Acta Cryst.
C54 (1998) 128–130.
[18] Y. Elerman, A. Elmali, Acta Cryst. C54 (1998) 529–531.
[19] I. Moustakali, Mavridis, E. Hadjoudis, Acta Cryst. A46 (1978)
467–473.
[20] F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G.
Orpen, R. Taylor, J. Chem. Perkin Trans II. (1987) S1–S19.
´
ˇ
´
[21] M. Gavranic, B. Kaitner, E. Mestrovic, J. Chem. Crystallogr.
Acknowledgements
26 (1996) 23–28.
[22] Y. Elerman, A. Elmali, O. Atakol, I. Svoboda, Acta Cryst. C51
(1995) 2344–2346.
[23] J. Ondracek, Z. Kovanova, J. Maixner, F. Jursik, Acta Cryst.
C49 (1993) 1948–1951.
ThisworkwassupportedbyGrantTBAG-1597ofthe
Scientific and Technical Research Council of Turkey.
[24] T. Steiner, Cryst. Rev. 6 (1996) 1–57.
[25] R. Taylor, O. Kennard, J. Am. Chem. Soc. 104 (1982) 5063–
5070.
References
[26] H.B. Burgi, J.D. Dunitz, Helv. Chim. Acta 54 (1971) 1255–
1266.
[1] M. Calligaris, L. Randaccio (Eds.), Comprehensive