ChemComm
DOI: 10.1039/C4CC08000A
photochemical reactions between small molecules (Fig. S4),
support of this work.
because we are measuring the percent conversion of starting
material and the reagent here is light, which is constant at all
different concentrations.
Notes and references
a
Department of Chemistry, University of Massachusetts, Amherst, MA
1003
5
0
5
0
5
To test if the difference in the extent of PDS generation is
0
molecules inside these nanogels prior to the photoirradiation.
With the dye molecule, DiI, incorporated into the nanoparticle,
the guest molecule was found to be stably encapsulated in the
nanoparticle over a 24 hours time period, even after a 10-fold
dilution (Fig. 5a). However, when glutathione (GSH) was added
to this solution at 10 mM concentration, the guest molecule
seems to be releasing over time (Fig. 5b).
† Electronic Supplementary Information (ESI) available: See the
Supporting Information for the synthesis and characterization of PDS-OH,
random copolymer and nanoparticles. See DOI: 10.1039/b000000x/
1
1
2
2
6
7
7
8
8
9
9
5
0
5
0
5
0
5
1 (a) G. C. Fu, S. T. Nguyen, R. H. Grubbs, J. Am. Chem. Soc. 1993, 115,
9
856-9857; (b) D. S. La, J. B. Alexander, D. R. Cefalo, D. D. Graf, A. H.
Hoveyda, R. R. Schrock, J. Am. Chem. Soc. 1998, 120, 9720-9721; (c) S. J.
Connon, S. Blechert, Angew. Chem. Int. Ed. 2003, 42, 1900-1923; (d) H. Mutlu,
L. M. de Espinosa, M. A. R. Meier, Chem. Soc. Rev. 2011, 40, 1404-1445; (e)
K. B. Wagener, J. M. Boncella, J. G. Nel, Macromolecules 1991, 24, 2649-
To further confirm that the encapsulation stability could be
easily tuned by simply varying the irradiation time, fluorescence
resonance energy transfer (FRET) based encapsulation stability
2
657; (f) Y.-X. Lu, Z. Guan, J. Am. Chem. Soc. 2012, 134, 14226-14231; (g) M.
J. Koh, R. K. M. Khan, S. Torker, A. H. Hoveyda, Angew. Chem. Int. Ed. 2014,
5
3, 1968-1972.
2
(a) K. Oh, K.-S. Jeong, J. S. Moore, Nature 2001, 414, 889-893; (b) T.
1
4
assay was carried out. In this experiment, a faster FRET
evolution suggests leaky nanoparticle, while an unchanged FRET
over time suggests stably encapsulated guests inside the
nanoparticle. Indeed, we observed that there was a rapid
evolution of FRET with time in the micelle aggregates without
any photoirradiation (Fig. 5c), compared to the nanoparticle
prepared using a 1 hour irradiation (Fig. S8). The evolution of
FRET was even slower after 2 hours of irradiation (Fig. 5d),
suggesting that the encapsulation stability can indeed be tuned by
varying the irradiation time.
Nishinaga, A. Tanatani, K. Oh, J. S. Moore, J. Am. Chem. Soc. 2002, 124,
5934-5935; (c) G. K. Cantrell, T. Y. Meyer, J. Am. Chem. Soc. 1998, 120,
8
3
035-8042; (d) C. D. Meyer, C. S. Joiner, J. F. Stoddart, Chem. Soc. Rev. 2007,
6, 1705-1723; (e) D. Janeliunas, P. van Rijn, J. Boekhoven, C. B. Minkenberg,
J. H. van Esch, R. Eelkema, Angew. Chem. Int. Ed. 2013, 52, 1998-2001; (f) P.
Taynton, K. Yu, R. K. Shoemaker, Y. Jin, H. J. Qi, W. Zhang, Adv. Mater.
2
014, 26, 3938–3942.
3 (a) A. K. H. Hirsch, E. Buhler, J.-M. Lehn, J. Am. Chem. Soc. 2012, 134,
4
1
177-4183. (b) J. F. Folmer-Andersen, J.-M. Lehn, J. Am. Chem. Soc. 2011,
33, 10966-10973. (c) M. J. Barrell, A. G. Campaña, M. von Delius, E. M.
Geertsema, D. A. Leigh, Angew. Chem. Int. Ed. 2011, 50, 285-290; (d) A.
Dirksen, S. Dirksen, T. M. Hackeng, P. E. Dawson, J. Am. Chem. Soc. 2006,
1
28, 15602-15603; (e) M.-K. Chung, C. M. Hebling, J. W. Jorgenson, K.
Severin, S. J. Lee, M. R. Gagné, J. Am. Chem. Soc. 2008, 130, 11819-11827.
(a) G. Markus, F. Karush, J. Am. Chem. Soc. 1957, 79, 134-139; (b) M.
4
Rueping, B. Jaun, D. Seebach, Chem. Commun. 2000, 22, 2267-2268; (c) W. J.
Wedemeyer, E. Welker, M. Narayan, H. A. Scheraga, Biochemistry 2000, 39,
Conclusions
4
5
1
207-4216.
In summary, we have demonstrated that: (i) PDS-containing
asymmetrically substituted disulfides can be homolytically
cleaved using photochemical irradiation; (ii) although the alkyl
substituted thiyl radical consistently undergoes radical
recombination, the reactivity of the thiopyridyl radical is
(a) S. Otto, R. L. E. Furlan, J. K. M. Sanders, J. Am. Chem. Soc. 2000, 122,
2063-12064; (b) S. Otto, R. L. E. Furlan, J. K. M. Sanders, Science 2002, 297,
590-593; (c) J. Li, J. M. A. Carnall, M. C. A. Stuart, S. Otto, Angew. Chem. Int.
Ed. 2011, 50, 8384-8386; (d) D. Basak, R. Kumar, S. Ghosh, Macromol. Rapid
Commun., 2014, 35, 1340–1344.
3
3
4
4
5
0
5
0
5
0
6
1
H. Kuang, H. He, J. Hou, Z. Xie, X. Jing, Y. Huang, Macromol. Biosci. 2013,
3, 1593-1600.
dependent on the presence of oxygen; (iii) in the presence of 100
oxygen, the thiopyridyl radical gets converted to pyridine-2-
sulfonic acid, while it undergoes hydrogen abstraction or radical
recombination in deoxygenated solutions; (iv) the oxidation
7 (a) J. W. Chung, K. Lee, C. Neikirk, C. M. Nelson, R. D. Priestley, small
2
4
7
8
012, 8, 1693-1700; (b) J. He, X. Tong, Y. Zhao, Macromolecules 2009, 42,
845-4852; (c) J. Jiang, B. Qi, M. Lepage, Y. Zhao, Macromolecules 2007, 40,
90-792.
J. S. Kim, J. H. Youk, Polymer 2009, 50, 2204-2208.
105
9 (a) S. Chakravarthi, C. E. Jessop, N. J. Bulleid, EMBO reports 2006, 7, 271-
75; (b) Z. Luo, K. Cai, Y. Hu, L. Zhao, P. Liu, L. Duan, W. Yang, Angew.
reaction also provides a pathway for driving the equilibrium
towards the desired product; (v) this feature was used for the
reagentless synthesis of crosslinked polymer nanoparticles; (vi)
2
Chem. Int. Ed. 2011, 50, 640-643; (c) J.-H. Ryu, S. Jiwpanich, R. Chacko, S.
Bickerton, S. Thayumanavan, J. Am. Chem. Soc. 2010, 132, 8246-8247; (d) L.
Li, K. Raghupathi, C. Yuan, S. Thayumanavan, Chem. Sci. 2013, 4, 3654-3660;
(e) A. V. Kabanov, S. V. Vinogradov, Angew. Chem. Int. Ed. 2009, 48, 5418-
the size of the nanoparticle can be conveniently varied by tuning 110
the size of the nanoaggregates, because the photo-induced
crosslinking was predominantly intra-aggregate; and (vii) the
crosslink density and encapsulation stability of this nanoparticle
5
1
1
429.
0 (a) B. Milligan, D. E. Rivett, W. E. Savige, Aust. J. Chem. 1963, 16, 1020-
029; (b) B. Nelander, S. Sunner, J. Am. Chem. Soc. 1972, 94, 3576-3577; (c)
Y. R. Lee, C. L. Chiu, S. M. Lin, J. Chem. Phys. 1994, 100, 7376-7384; (d) D.
Gupta, A. R. Knight, Can. J. Chem. 1980, 58, 1350-1354; (e) H. Otsuka, S.
Nagano, Y. Kobashi, T. Maeda, A. Takahara, Chem. Commun. 2010, 46, 1150-
1152; (f) E. Banchereau, S. Lacombe, J. Ollivier, Tetrahedron Lett. 1995, 36,
115
can be simply varied by altering the irradiation time. In addition
to the typical advantages of a reagentless reaction, the fact that
this reaction is carried out in water and that the byproduct of this
8
2
197-8200; (g) E. Banchereau, S. Lacombe, J. Ollivier, Tetrahedron 1997, 53,
087-2102.
reaction is highly water-soluble sulfonic acid that can be easily 120
removed by dialysis suggest that this methodology offers a
promising new approach for nanoparticle synthesis. Since the
crosslinks generated here are biologically relevant, this method
11 (a) Y. Kakizawa, A. Harada, K. Kataoka, J. Am. Chem. Soc. 1999, 121,
1247-11248; (b) J.-H. Ryu, R. T. Chacko, S. Jiwpanich, S. Bickerton, R. P.
Babu, S. Thayumanavan, J. Am. Chem. Soc. 2010, 132, 17227-17235.
2 (a) W. Adam, G. N. Grimm, S. Marquardt, C. R. Saha-Möller, J. Am. Chem.
Soc. 1999, 121, 1179-1185; (b) T. S. Lobana, I. Kinoshita, K. Kimura, T.
Nishioka, D. Shiomi, K. Isobe, Eur. J. Inorg. Chem. 2004, 2004, 356-367;
1
1
125
also could have implications in generating new materials of
interest in biology and medicine.
1
3 L. Li, J.-H. Ryu, S. Thayumanavan, Langmuir 2013, 29, 50-55.
14 S. Jiwpanich, J.-H. Ryu, S. Bickerton, S. Thayumanavan, J. Am. Chem. Soc.
010, 132, 10683-10685.
2
Acknowledgements
We thank the NIGMS of the National Institute of Health (GM-
065255) and the Army Research Office (63889CH) for partial
5
5
4
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]