Organotin Chemistry
FULL PAPER
d=À501.30 ppm; IR (Nujol mull): n˜ =1329, 1243, 1216, 1152, 1023,
942 cmÀ1; elemental analysis calcd (%) for C36H34F34O10S6Sn: C 27.30, H
2.16; found: C 27.43, H 2.23.
2004, p. 621; b) M. Pereyre, J.-P. Quintard, A. Rahm, Tin in Organic
Synthesis, Butterworths, London, 1987.
[2] a) J. Otera, in Advances in Detailed Reaction Mechanisms, Vol. 3
(Ed.: J. M. Coxon), JAI, London, 1994, p. 167; b) J. Otera, in Ency-
clopedia of Reagents for Organic Synthesis, Vol. 2 (Ed.: L. A. Pa-
quette), Wiley, Chichester, 1995, p. 1140; c) O. A. Mascaretti,
R. L. E. Furlꢁn, Aldrichimica Acta 1997, 30, 55; d) J. Otera, Acc.
Chem. Res. 2004, 37, 288.
[3] a) T. Sato, J. Otera, H. Nozaki, J. Am. Chem. Soc. 1990, 112, 901;
b) T. Sato, Y. Wakahara, J. Otera, H. Nozaki, Tetrahedron Lett.
1990, 31, 1581; c) T. Sato, Y. Wakahara, J. Otera, H. Nozaki, S. Fu-
kuzumi, J. Am. Chem. Soc. 1991, 113, 4028; d) T. Sato, Y. Wakahara,
J. Otera, H. Nozaki, Tetrahedron 1991, 47, 9773; e) T. Sato, J. Otera,
H. Nozaki, J. Org. Chem. 1993, 58, 4971.
Data for Me2Sn(OSO2C8F17)2(DMSO)4 (7): Yield: 92%; 1H NMR
(300 MHz, [D6]acetone): d=1.19 (s, 6H), 3.04 ppm (s, 24H); 19F NMR
(282 MHz, [D6]acetone): d=À79.19 (m, 6F), À112.56 (m, 4F), À118.58
(m, 4F), À119.70 to À119.99 (m, 12F), À120.84 (m, 4F), À124.25 to
À124.37 (m, 4F); 119Sn NMR (111 MHz, [D6]acetone): d=À303.29 ppm;
IR (Nujol mull): n˜ =1329, 1283, 1242, 1202, 1151, 1073, 1040, 993,
941 cmÀ1; elemental analysis calcd (%) for C26H30F34O10S6Sn: C 21.40, H
2.07; found: C 21.37, H 1.70.
Determination of a hydration number of 1 (representative): Molecular
sieves (4 , 11 g, dried at 1908C for 0.5 h under reduced pressure) were
added to [D3]acetonitrile (25 g), and the mixture was kept under argon
overnight. In this [D3]acetonitrile, water was not detected by 1H NMR
spectroscopy. The dehydrated [D3]acetonitrile (0.6 mL) was added to a
freshly prepared 1 (10 mg, recrystallized from AcOEt/hexane followed
by drying under reduced pressure for 2 h), and the solution was analyzed
by 1H NMR spectroscopy. Based on integrations of CH3 of butyl (d=
0.93 ppm (t, 24H)) and H2O (d=3.66 ppm (s, 8.08H)), a hydration
number was determined to be about 1.01 per each Sn atom.
[4] X. Li, A. Kurita, S. Man-e, A. Orita, J. Otera, Organometallics
2005, 24, 2567.
[5] Commercially available from Aldrich Chemical Co. Inc.
[6] a) K. Sakamoto, Y. Hamada, H. Akashi, A. Orita, J. Otera, Organo-
metallics 1999, 18, 3555; b) K. Sakamoto, H. Ikeda, H. Akashi, T.
Fukuyama, A. Orita, J. Otera, Organometallics 2000, 19, 3242.
[7] a) J. Otera, T. Yano, K. Nakashima, R. Okawara, Chem. Lett. 1984,
2109; b) T. Yano, K. Nakashima, J. Otera, R. Okawara, Organome-
tallics 1985, 4, 1501.
[8] V. G. Kumar Das, W. Kitching, J. Organomet. Chem. 1967, 10, 59.
[9] H. N. Farrer, M. M. McGrady, R. S. Tobias, J. Am. Chem. Soc. 1965,
87, 5019.
According the same procedure, hydration numbers were determined for
the following organotin compounds which had been dried under reduced
pressure overnight and kept in the air (Table 7).
[10] It is not likely that all PfO ligands are dissociated to give highly pos-
itive species, and thus the structure 1’ represents merely one possible
ionic species.
Table 7. Hydration numbers for compounds 1 and 3–5.
Hydration number per Sn atom[a]
[11] K. Ohkubo, S. C. Manson, A. Orita, J. Otera, S. Fukuzumi, J. Org.
Chem. 2003, 68, 4720.
[12] The allylation with 10 catalyzed by HCl in H2O/THF: a) A. Yanagi-
sawa, H. Inoue, M. Morodome, H. Yamamoto, J. Am. Chem. Soc.
1993, 115, 10356; b) A. Yanagisawa, M. Morodome, H. Nakashima,
H. Yamamoto, Synlett 1997, 1309.
[13] Mukaiyama–aldol reactions in water: a) S. Kobayashi, K. Manabe,
Acc. Chem. Res. 2002, 35, 209; b) K. Manabe, S. Kobayashi, Chem.
Eur. J. 2002, 8, 4095, and references therein.
[14] K. Wallenfels, M. Gellerich, Chem. Ber. 1959, 92, 1406.
[15] M. Patz, Y. Kuwahara, T. Suenobu, S. Fukuzumi, Chem. Lett. 1997,
567.
[16] S. Fukuzumi, T. Suenobu, M. Patz, T. Hirasaka, S. Itoh, M. Fujitsu-
ka, O. Ito, J. Am. Chem. Soc. 1998, 120, 8060.
[17] G. M. Whitesides, F. D. Gutowski, J. Org. Chem. 1976, 41, 2882.
[18] Y.-Z. Jin, N. Yasuda, H. Furuno, J. Inanaga, Tetrahedron Lett. 2003,
44, 8765.
5 min
1 day
3 days
(PfOBu2SnOSnBu2OPf)2 (1)
Bu2Sn(OSO2C8F17)2 (3)
Ph2Sn(OSO2C8F17)2 (5)
Me2Sn(OSO2C8F17)2 (4)
0.13
0.24
1.46
1.12
1.28
3.06
11.0
6.70
1.30
3.20
12.7
6.90
[a] After keeping in the air.
Solubility determination of
1 (representative): AcOEt (0.5 mL) was
placed in a test tube; compound 1 was added gradually at RT. When the
amount of added 1 exceeded 797.2 mg, insoluble 1 appeared. Based on
this data, solubility of (C8F17SO3)Bu2SnOSnBu2(OSO2C8F17) was deter-
mined to be 1594 gLÀ1. According to the same procedure, other solubili-
ties were determined.
Allylation of benzaldehyde with 10 catalyzed by
1 (representative):
PhCHO (106 mg, 1.0 mmol) and 10 (85 mg, 0.3 mmol) were added to a
solution of 1 (74 mg, 0.05 mmol) in THF (3 mL), and the mixture was
stirred at RTfor 12 h. After water (2 mL) was added, the mixture was
stirred at RTfor 1 h. After usual workup with AcOEt/water, the com-
bined organic layer was evaporated. The crude product was subjected to
GC analysis to determine a GC yield (98%).
[19] T. Nakagawa, H. Fujisawa, T. Mukaiyama, Chem. Lett. 2003, 32,
462.
[20] J. Chen, K. Sakamoto, A. Orita, J. Otera, Synlett 1996, 877.
[21] J.-X. Chen, J. Otera, Tetrahedron 1997, 53, 14275.
[22] S.-L. Chen, S.-J. Ji, T.-P. Loh, Tetrahedron Lett. 2004, 45, 375.
[23] R. Hamasaki, Y. Chounan, H. Horino, Y. Yamamoto, Tetrahedron
Lett. 2000, 41, 9883.
[24] G. Wenke, E. N. Jacobsen, G. E. Totten, A. C. Karydas, Y. E.
Rhodes, Synth. Commun. 1983, 13, 449.
[25] H. Ishitani, M. Iwamoto, Tetrahedron Lett. 2003, 44, 299.
[26] J.-X. Chen, K. Sakamoto, A. Orita, J. Otera, Tetrahedron 1998, 54,
8411.
[27] K. Saigo, M. Osaki, T. Mukaiyama, Chem. Lett. 1976, 769.
[28] W.-D. Z. Li, X.-X. Zhang, Org. Lett. 2002, 4, 3485.
[29] T.-P. Loh, L.-L. Wei, Tetrahedron 1998, 54, 7615.
[30] T. Inokuchi, Y. Kurokawa, M. Kusumoto, S. Tanigawa, S. Takagishi,
S. Torii, Bull. Chem. Soc. Jpn. 1989, 62, 3739.
Mukaiyama–aldol reaction of benzaldehyde with 11 catalyzed by 1 (rep-
resentative): PhCHO (106 mg, 1.0 mmol) and 11 (250 mg, 1.3 mmol)
were added to a solution of 1 (74 mg, 0.05 mmol) in THF (3 mL), and the
mixture was stirred at RTfor 12 h. After water (2 mL) had been added,
the mixture was stirred at RTfor 1 h. After usual workup with AcOEt/
water, the combined organic layer was evaporated. The crude product
was subjected to column chromatography on silica gel (5:1 hexane/
AcOEt) to afford the desired compound in a pure form (81% yield).
Aldehydes such as benzaldehyde, 15–17 and nucleophiles 10–14 are com-
mercially available. All products have been reported: 18,[18] 19,[19] 20,[20]
21,[21] 22,[22] 23,[23] 24,[20] 25,[24] 26,[25] 27,[26] 28,[27] 29,[28] 30,[29] 31,[30] and
32.[31]
[31] T. Mukaiyama, T. Nakagawa, H. Fujisawa, Chem. Lett. 2003, 32, 56.
[1] a) A. Orita, J. Otera, in Main Group Metals in Organic Synthesis
Vol. 2 (Eds.: H. Yamamoto, K. Oshima), Wiley-VCH, Weinheim,
Received: September 5, 2005
Published online: December 1, 2005
Chem. Eur. J. 2006, 12, 1642 – 1647
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1647