Journal of The Electrochemical Society, 150 ͑9͒ H214-H219 ͑2003͒
Conclusions
H219
Electrodeposition of Pb has been shown to be a suitable metal
catalyst as sensing electrode for amperometric TCE sensor. The
SEM morphologies of prepared working electrode show that the
substrate surface has the larger roughness by pretreating electrode
with 0.1 M HNO3 aqueous solution. Additionally, the XRD pattern
also showed the modified Pb electrode containing some derivatives
after the electrodeposition which enhanced the stability of the TCE
sensor. The optimal conditions for preparation working electrode
were obtained as 0.1 M HNO3 pretreatment, 20 mA/cm2 elec-
trodeposition current density, and 30°C electrodeposition tempera-
ture. Under the optimal sensing conditions, a linear response, i
ϭ 1.060 TCE ϩ 9.167, was obtained under TCE concentration
͓
͔
range from 100 to 700 ppm. Additionally, k is 7.217 10Ϫ4/cm s.
Therefore, the electrochemical TCE sensor by using modified Pb
electrode showed promising features for commercial application.
Figure 12. GC-Mass spectroscopy of electrolysis product. Pretreating con-
ditions: same as Fig. 1. Electrodeposition conditions: same as Fig. 2A. Elec-
trolysis conditions: 0.01 M TBAT in AN solution, electrodeposited Pb-
modified electrode as cathode, Pt plate as anode, Ag/Agϩ ͑with 0.1 M TBAP
in AN solution͒ as reference electrode, 155 rpm agitation rate, and at room
temperature.
Acknowledgments
The support of the Ministry of Education of the Republic of
China ͑EX-91-E-FA09-5-4͒ and National Cheng Kung University
are gratefully acknowledged.
National Cheng Kung University assisted in meeting the publication
costs of this article.
aqueous solution was added to the catholyte and the white AgCl was
found. It can be confirmed that chlorine ion presents in the
catholyte. Moreover, the pH of catholyte decreased from 7.0 to 1.0
during the electrolysis. All results show that hydrogen ion is gener-
ated in the catholyte after electrolysis. The acetylene chloride not
only has stronger acidity than TCE but also dissociated to acetylene
chloride anion in the solution. The electrochemical reduction mecha-
nism for TCE by using electrodeposited Pb-modified electrode as
working electrode is proposed as shown in Eq. 2
References
1. K. H. Kilburn, Arch. Environ. Health, 57, 113 ͑2002͒.
2. T. H. Ma, C. Xu, S. Liao, H. McConnell, B. S. Jeong, and C. D. Won, Mutat. Res.,
359, 39 ͑1996͒.
3. Y. Ku, C. M. Ma, and Y. S. Shen, Appl. Catal., B, 34, 181 ͑2001͒.
4. D. Bogdal and J. Pielichowski, Bull. Soc. Chim. Fr., 132, 1127 ͑1995͒.
5. P. Kumar, A. K. Prasad, and K. K. Dutta, Hum. Exp. Toxicol., 19, 117 ͑2000͒.
6. D. Wartenberg, D. Reyner, and C. S. Scott, Environ. Health Perspect., 108, 161
͑2000͒.
7. A. Ojajarvi, T. Partanen, A. Ahlbom, P. Boffetta, T. Hakulinen, N. Jourenkova, T.
Kauppinen, M. Kogevinas, H. Vainio, E. Weiderpass, and C. Wesseling, Am. J.
Epidemiol., 153, 841 ͑2001͒.
8. S. Hanada, T. Shigematsu, K. Shibuya, M. Eguchi, T. Hasegawa, F. Suda, Y. Ka-
magata, T. Kanagawa, and R. Kurane, J. Ferment. Bioeng., 86, 539 ͑1998͒.
9. T. L. Jacobs, J. M. Warmerdam, M. A. Medina, and W. T. Piver, Environ. Health
Perspect., 104, 866 ͑1996͒.
10. E. A. Maull, V. J. Cogliano, C. S. Scott, H. A. Barton, J. W. Fisher, M. Greenberg,
L. Rhomberg, and S. P. Sorgen, Drug Chem. Toxicol., 20, 427 ͑1997͒.
11. T. Kaneko, P. Y. Wang, and A. Sato, Ind. Health, 35, 301 ͑1997͒.
12. J. Xie, F. Hui, and R. Rosset, Analusis, 24, 214 ͑1996͒.
13. L. R. Jordan and P. C. Hauser, Anal. Chem., 69, 2669 ͑1997͒.
14. J. Farrell, N. Melitas, M. Kason, and T. Li, Environ. Sci. Technol., 34, 2549 ͑2000͒.
15. T. Li and J. Farrell, Environ. Sci. Technol., 35, 3560 ͑2001͒.
16. J. F. Fan and J. T. Yates, J. Am. Chem. Soc., 118, 4686 ͑1996͒.
17. M. D. Driessen, T. M. Miller, and V. H. Grassian, J. Mol. Catal. A: Chem., 131, 149
͑1998͒.
͓2͔
Comparison of the experimental results and the theoretical
ones.—The sensing reaction was mass-transfer controlled and the
TCE concentration was less than 700 ppm, the relationship of dif-
fusion current, id , and the concentration of TCE in the solution, CL ,
can be described as shown in Eq. 3
18. D. Chatterjee and C. Bhattacharya, Indian J. Chem. Section A-Inorganic Bio-
Inorganic Physical Theoretical Anal. Chem., 38, 1256 ͑1999͒.
19. L. H. Zhao, S. Ozaki, K. Itoh, and M. Murabayashi, Electrochemistry (Tokyo, Jpn.),
70, 8 ͑2002͒.
id ϭ ZFAkCL
͓3͔
20. L. Yang, Y. F. Chang, and M. S. Chou, J. Haz. Mater., 69, 111 ͑1999͒.
21. R. E. Parales, J. L. Ditty, and C. S. Harwood, Appl. Environ. Microbiol., 66, 4098
͑2000͒.
22. E. Hourbron, S. Escoffier, and B. Capdeville, Water Sci. Technol., 42, 395 ͑2000͒.
23. F. Hoffman, D. Ronen, H. Rosin, and F. Milanovich, Talanta, 43, 681 ͑1996͒.
24. T. S. Han, Y. C. Kim, S. Sasaki, K. Yano, K. Ikebukuro, A. Kitayama, T. Naga-
mune, and I. Karube, Anal. Chim. Acta, 431, 225 ͑2001͒.
where Z is the number of electron transfer, F is the Faraday constant,
A is the sensing area of electrode, and k is the rate constant of mass
transfer control. Equation 3 implies a linear relationship between
TCE concentration and cathodic current. The relationship of id and
CL at the desired sensing conditions was obtained from the data of
Fig. 11 resulting in Eq. 4
25. T. S. Han, S. Sasaki, K. Yano, K. Ikebukuro, A. Kitayama, T. Nagamune, and I.
Karube, Talanta, 57, 271 ͑2002͒.
26. M. H. Chen, T. Y. Lin, and T. C. Chou, J. Electrochem. Soc., 149, H87 ͑2002͒.
27. J. Simonet, Y. Astier, and C. Dano, J. Electroanal. Chem., 451, 5 ͑1998͒.
28. C. Kittel, Introduction to Solid State Physics, 7th ed., p. 23, John Wiley & Sons,
New York ͑1996͒.
29. F. A. Lowenheim, Method Electroplating, 3rd ed., p. 268, John Wiley & Sons, New
York ͑1974͒.
id ϭ 1.060CL
͓4͔
Comparing Eq. 3 and 4 and substituting the number of electron
transfer, Z, which is 2,26 and A, which is 1.0 cm2, k can be obtained
to be 7.217 ϫ 10Ϫ4/cm s.
Downloaded on 2015-04-15 to IP 138.251.14.35 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).