Organic Letters
Letter
(5) (a) Poli, R. Angew. Chem., Int. Ed. 2006, 45, 5058. (b) Tasker, S.
Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299. (c) Weix, D.
J. Acc. Chem. Res. 2015, 48, 1767. (d) Studer, A.; Curran, D. P. Angew.
Chem., Int. Ed. 2016, 55, 58. (e) Tellis, J. C.; Kelly, C. B.; Primer, D.
N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res. 2016,
49, 1429. (f) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org.
Chem. 2016, 81, 6898.
(6) (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev.
2011, 40, 5068. (b) Louillat, M.-L.; Patureau, F. W. Chem. Soc. Rev.
2014, 43, 901. (c) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015,
48, 1040. (d) He, G.; Wang, B.; Nack, W. A.; Chen, G. Acc. Chem. Res.
2016, 49, 635. (e) Le Bras, J. L.; Muzart, J. Eur. J. Org. Chem. 2018,
2018, 1176. (f) Rit, R. K.; Shankar, M.; Sahoo, A. K. Org. Biomol.
Chem. 2017, 15, 1282. (g) Moghimi, S.; Mahdavi, M.; Shafiee, A.;
Foroumadi, A. Eur. J. Org. Chem. 2016, 2016, 3282. (h) Timsina, Y.
N.; Gupton, B. F.; Ellis, K. C. ACS Catal. 2018, 8, 5732.
In conclusion, we have developed a cobalt-catalyzed direct
C(sp2)−H thiolation of aromatic amides with disulfides. This
reaction exhibits a relatively extensive substrate scope and high
functional group compatibility. Disulfides with bulky sub-
stituents such as mesityl or 2,4,6-triisopropylphenyl are also
found to be compatible under these reaction conditions.
Mechanistic study indicates that the C(sp2)−S bond is
probably formed by the coupling of a cobaltacycle intermediate
with a thioether radical and subsequent reductive elimination.
In addtion, this direct C(sp2)−H thiolation of aromatic amides
with disulfides was successfully applied as the key step in the
synthesis of Quetiapine. Further extension of this method
toward drug synthesis is ongoing in our laboratory.
ASSOCIATED CONTENT
* Supporting Information
■
(7) Li, M.; Kwong, F. Y. Angew. Chem., Int. Ed. 2018, 57, 6512.
S
́
(8) For selected examples, see: (a) Murphy, A. R.; Frechet, J. M.
́
Chem. Rev. 2007, 107, 1066. (b) Nair, D. P.; Podgorski, M.; Chatani,
The Supporting Information is available free of charge on the
S.; Gong, T.; Xi, W.; Fenoli, C. R.; Bowman, C. N. Chem. Mater.
2014, 26, 724. (c) Mori, T.; Nishimura, T.; Yamamoto, T.; Doi, I.;
Miyazaki, E.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2013, 135,
13900.
Experimental procedures, characterization data, and
(9) For selected examples, see: (a) Nagao, T.; Sato, M.; Nakajima,
H.; Kiyomoto, A. Chem. Pharm. Bull. 1973, 21, 92. (b) Bharathi, C.;
Prabahar, K. J.; Prasad, C. S.; Rao, M. S.; Trinadhachary, G. N.;
Handa, V. K.; Dandala, R.; Naidu, A. Pharmazie 2008, 63, 14.
(c) Thomas, G. L.; Spandl, R. J.; Glansdorp, F. G.; Welch, M.;
Bender, A.; Cockfield, J.; Lindsay, J. A.; Bryant, C.; Brown, D. F. J.;
Loiseleur, O.; Rudyk, H.; Ladlow, M.; Spring, D. R. Angew. Chem., Int.
Ed. 2008, 47, 2808. (d) Woo, C. M.; Gholap, S. L.; Herzon, S. B. J.
Nat. Prod. 2013, 76, 1238. (e) Bontemps, N.; Gattacceca, F.; Long,
C.; Thomas, O. P.; Banaigs, B. J. Nat. Prod. 2013, 76, 1801.
(10) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X.
Chem. Soc. Rev. 2015, 44, 291.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
(11) (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am.
Chem. Soc. 2006, 128, 6790. (b) Li, Z.; Hong, J.; Zhou, X. Tetrahedron
2011, 67, 3690. (c) Ranjit, S.; Lee, R.; Heryadi, D.; Shen, C.; Wu, J.;
Zhang, P.; Huang, K.-W.; Liu, X. J. Org. Chem. 2011, 76, 8999.
(d) Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134,
18237.
ACKNOWLEDGMENTS
■
This work is supported by Shenzhen Basic Research Program
(JCYJ20170817112532779 and JCYJ20170412152435366)
and the Shenzhen Nobel Prize Scientists Laboratory Project
(C17783101).
(12) Zhang, C.; McClure, J.; Chou, C. J. J. Org. Chem. 2015, 80,
4919.
REFERENCES
■
(13) (a) Yang, K.; Wang, Y.; Chen, X.; Kadi, A. A.; Fun, H.-K.; Sun,
H.; Zhang, Y.; Lu, H. Chem. Commun. 2015, 51, 3582. (b) Yan, S.-Y.;
Liu, Y.-J.; Liu, B.; Liu, Y.-H.; Shi, B.-F. Chem. Commun. 2015, 51,
4069. (c) Zhu, J.; Chen, Y.; Lin, F.; Wang, B.; Chen, Z.; Liu, L. Org.
Biomol. Chem. 2015, 13, 3711. (d) Lin, C.; Li, D.; Wang, B.; Yao, J.;
Zhang, Y. Org. Lett. 2015, 17, 1328. (e) Reddy, V. P.; Qiu, R.; Iwasaki,
T.; Kambe, N. Org. Biomol. Chem. 2015, 13, 6803.
(14) (a) Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.;
Jian, J.-X. J. Am. Chem. Soc. 2015, 137, 9273. (b) Gensch, T.; Klauck,
F. J. R.; Glorius, F. Angew. Chem., Int. Ed. 2016, 55, 11287. (c) Hu, L.;
Chen, X.; Yu, L.; Yu, Y.; Tan, Z.; Zhu, G.; Gui, Q.; Wu, L.-Z.; Lei, A.
Org. Chem. Front. 2018, 5, 216. (d) Wang, T.; Chen, J.; Wang, J.; Xu,
S.; Lin, A.; Yao, H.; Jiang, S.; Xu, J. Org. Biomol. Chem. 2018, 16,
3721.
(1) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.;
Lei, A. Chem. Rev. 2017, 117, 9016 and references cited therein .
(2) For recent selected examples using palladium catalyst, see:
(a) Yan, Y.; Feng, P.; Zheng, Q.-Z.; Liang, Y.-F.; Lu, J.-F.; Cui, Y.;
Jiao, N. Angew. Chem., Int. Ed. 2013, 52, 5827. (b) Seth, K.; Nautiyal,
M.; Purohit, P.; Parikh, N.; Chakraborti, A. K. Chem. Commun. 2015,
51, 191. (c) Liu, W.; Yu, Q.; Hu, L.; Chen, Z.; Huang, J. Chem. Sci.
̈
2015, 6, 5768. (d) Sharma, U. K.; Gemoets, H. P. L.; Schroder, F.;
Noel, T.; Van der Eycken, E. V. V. ACS Catal. 2017, 7, 3818. (e) Xia,
̈
H.; An, Y.; Zeng, X.; Wu, J. Chem. Commun. 2017, 53, 12548.
(3) For recent selected examples using nickel catalyst, see: (a) Wu,
X.; Zhao, Y.; Ge, H. J. Am. Chem. Soc. 2014, 136, 1789. (b) Wu, X.;
Zhao, Y.; Ge, H. Chem. - Eur. J. 2014, 20, 9530. (c) Aihara, Y.;
Tobisu, M.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2014, 136,
15509. (d) Xu, Z.-Y.; Jiang, Y.-Y.; Yu, H.-Z.; Fu, Y. Chem. - Asian J.
2015, 10, 2479. (e) Kubo, T.; Chatani, N. Org. Lett. 2016, 18, 1698.
(f) Soni, V.; Jagtap, R. A.; Gonnade, R. G.; Punji, B. ACS Catal. 2016,
6, 5666.
(4) For selected examples using cobalt or copper catalyst, see:
(a) Ackermann, L. J. Org. Chem. 2014, 79, 8948. (b) Zhang, J.; Chen,
H.; Lin, C.; Liu, Z.; Wang, C.; Zhang, Y. J. Am. Chem. Soc. 2015, 137,
12990. (c) Li, Q.; Hu, W.; Hu, R.; Lu, H.; Li, G. Org. Lett. 2017, 19,
4676. (d) Kommagalla, Y.; Yamazaki, K.; Yamaguchi, T.; Chatani, N.
Chem. Commun. 2018, 54, 1359. (e) Li, S.; Wang, B.; Dong, G.; Li,
C.; Liu, H. RSC Adv. 2018, 8, 13454. (f) Zhang, H.-J.; Su, F.; Wen, T.-
B. J. Org. Chem. 2015, 80, 11322.
(15) (a) Warawa, E. J.; Migler, B. M.; Ohnmacht, C. J.; Needles, A.
L.; Gatos, G. C.; McLaren, F. M.; Nelson, C. L.; Kirkland, K. M. J.
Med. Chem. 2001, 44, 372. (b) Vieta, E.; Parramon, G.; Padrell, E.;
́
Nieto, E.; Martinez-Aran, A.; Corbella, B.; Colom, F.; Reinares, M.;
Goikolea, J. M.; Torrent, C. Bipolar Disord. 2002, 4, 335.
(16) (a) Niphade, N. C.; Mali, A. C.; Pandit, B. S.; Jagtap, K. M.;
Jadhav, S. A.; Jachak, M. N.; Mathad, V. T. Org. Process Res. Dev.
2009, 13, 792. (b) Kandula, V. R.; Fondekar, K. P. Org. Chem. Ind. J.
2015, 11, 211.
D
Org. Lett. XXXX, XXX, XXX−XXX