moieties.25,30 These results indicate that the strength of the
H-bonding compared to the strength of other intermolecular
interactions has a major effect on a molecule’s ability to form
thermotropic liquid crystalline phases. In the case of the
unsaturated C18 diethanolamides, the role of H-bonding and
van der Waals interactions within the molecular arrangement
are more balanced than those in either their urea or mono-
ethanolamide counterparts. A similar result was seen in a
series of hexaalkoxytriphenylenes where the addition of either
an amide or urea group in the alkoxy tail resulted in suppression
of liquid crystalline behavior in the polymer due to strong
hydrogen bonding.61 Thus, when the stronger interactions within
an amphiphile dominate over the weaker ones then the tendency
to form liquid crystal mesophases is markedly reduced.
3 Z. G. Xu, D. L. Liu, W. H. Qiao, Z. S. Li and L. B. Cheng, Pet.
Sci. Technol., 2006, 24, 1363–1370.
4 K. J. Liu, A. Nag and J. F. Shaw, J. Agric. Food Chem., 2001, 49,
5761–5764.
5 T. X. Liu and P. A. Stansly, Pest Manage. Sci., 2000, 56, 861–866.
6 S. T. Keera and M. A. Deyab, Colloids Surf., A, 2005, 266,
129–140.
7 J. Feng, C. Rodriguez, T. Izawa, H. Kunieda and T. Sakai,
J. Dispersion Sci. Technol., 2004, 25, 163–172.
8 R. O. Brito, E. F. Marques, P. Gomes, M. J. Araujo and R. Pons,
J. Phys. Chem. B, 2008, 112, 14877–14887.
9 J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, J. Chem.
Soc., Faraday Trans. 2, 1976, 72, 1525–1568.
10 V. Luzzati, A. Tardieu, T. Gulikkrz, E. Rivas and F. Reisshus,
Nature, 1968, 220, 485.
11 J. M. Seddon, Biochim. Biophys. Acta, 1990, 1031, 1–69.
12 T. Kaasgaard and C. J. Drummond, Phys. Chem. Chem. Phys.,
2006, 8, 4957–4975.
13 J. Briggs and M. Caffrey, Biophys. J., 1994, 66, 1263–1263.
14 J. Clogston, J. Rathman, D. Tomasko, H. Walker and M. Caffrey,
Chem. Phys. Lipids, 2000, 107, 191–220.
Conclusions
15 L. de Campo, A. Yaghmur, L. Sagalowicz, M. E. Leser, H. Watzke
and O. Glatter, Langmuir, 2004, 20, 5254–5261.
The current study has characterized the thermotropic and
lyotropic liquid crystalline behavior of a series of unsaturated
C18 diethanolamide amphiphiles. These molecules exhibit
amphitropic behavior forming both a lyotropic lamellar phase
in the presence of water and a thermotropic smectic liquid
crystalline phase when neat. The effective molecular rod-like
geometry of this amphiphile family directs the packing ability
of the individual molecules in favor of bilayer structures with
the hydrophilic and hydrophobic portions of the molecules
segregated both in the presence and absence of water. The
intricate balance between headgroup H-bonding and inter-
chain van der Waals interaction is key to the phase behavior
exhibited by this amphiphile family. Additionally, the degree
of unsaturation plays a major role in both the lyotropic and
thermotropic phase transition temperatures. As the number
of unsaturated bonds increase, the temperature at which both
the lyotropic and thermotropic transitions occur decreases.
Unsaturation disrupts molecular packing via stiff kinks present
in the hydrocarbon chain at the unsaturation sites. It is an
effective method of increasing chain volume and disrupting
intermolecular interactions thereby resulting in alterations to
the thermotropic and/or lyotropic liquid crystalline phase
behavior of an amphiphile. Here, the unsaturated C18 diethanol-
amides possess the proper balance of intermolecular forces
combined with the necessary geometrical constraints to exhibit
amphitropic behavior. By gaining a better understanding of
how subtle molecular changes affect both neat and lyotropic phase
behavior, the rational design of amphiphiles with properties
tailored to a desired application can be targeted.
16 C. Fong, D. Wells, I. Krodkiewska, P. G. Hartley and
C. J. Drummond, Chem. Mater., 2006, 18, 594–597.
17 C. Fong, D. Wells, I. Krodkiewska, A. Weerawardeena, J. Booth,
P. G. Hartley and C. J. Drummond, J. Phys. Chem. B, 2007, 111,
10713–10722.
18 S. S. Funari, M. C. Holmes and G. J. T. Tiddy, J. Phys. Chem.,
1992, 96, 11029–11038.
19 Y. Misquitta and M. Caffrey, Biophys. J., 2001, 81, 1047–1058.
20 H. Qiu and M. Caffrey, Chem. Phys. Lipids, 1999, 100, 55–79.
21 H. Qiu and M. Caffrey, Biomaterials, 2000, 21, 223–234.
22 S. M. Sagnella, C. E. Conn, I. Krodkiewska, M. Moghaddam and
C. J. Drummond, J. Phys. Chem. B, 2010, 114, 1729–1737.
23 H. Takahashi, A. Matsuo and I. Hatta, Phys. Chem. Chem. Phys.,
2002, 4, 2365–2370.
24 J. M. Walsh and G. J. T. Tiddy, Langmuir, 2003, 19, 5586–5594.
25 D. Wells, C. Fong and C. J. Drummond, J. Phys. Chem. B, 2006,
110, 12660–12665.
26 X. J. Gong, S. M. Sagnella and C. J. Drummond, Int. J. Nano-
technol., 2008, 5, 370–392.
27 D. Wells, C. Fong, I. Krodkiewska and C. J. Drummond, J. Phys.
Chem. B, 2006, 110, 5112–5119.
28 D. Wells and C. J. Drummond, Langmuir, 1999, 15, 4713–4721.
29 S. M. Sagnella, C. E. Conn, I. Krodkiewska and C. J. Drummond,
Soft Matter, 2009, 5, 4823–4834.
30 S. M. Sagnella, C. E. Conn, I. Krodkiewska, M. Moghaddam,
J. M. Seddon and C. J. Drummond, Langmuir, 2010, 26, 3084–3094.
31 S. Z. Mohammady, M. Pouzot and R. Mezzenga, Biophys. J.,
2009, 96, 1537–1546.
32 J. M. Seddon, A. M. Squires, C. E. Conn, O. Ces, A. J. Heron,
X. Mulet, G. C. Shearman and R. H. Templer, Philos. Trans. R.
Soc. London, Ser. A, 2006, 364, 2635–2655.
33 P. J. Linstrom and W. G. E. Mallard, National Institute of
Standards and Technology, Gaithersburg, MD, 2005.
34 E. L. Skau, R. R. Mod, J. A. Harris and D. Mitcham, J. Chem.
Eng. Data, 1980, 25, 88–89.
35 O. Turpeinen, J. Am. Chem. Soc., 1938, 60, 56–57.
36 E. S. Lutton, J. Am. Oil Chem. Soc., 1965, 42, 1068.
37 B. J. Boyd, C. J. Drummond, I. Krodkiewska and F. Grieser,
Langmuir, 2000, 16, 7359–7367.
Acknowledgements
38 S. A. Galema, J. Engberts and H. A. vanDoren, Carbohydr. Res.,
1997, 303, 423–434.
39 B. F. B. Silva and E. F. Marques, J. Colloid Interface Sci., 2005,
290, 267–274.
40 M. Tokita, S. Funaoka and J. Watanabe, Macromolecules, 2004,
37, 9916–9921.
41 C. A. Ericsson, L. C. Ericsson, V. Kocherbitov, O. Soderman and
S. Ulvenlund, Phys. Chem. Chem. Phys., 2005, 7, 2970–2977.
42 C. A. Ericsson, L. C. Ericsson and S. Ulvenlund, Carbohydr. Res.,
2005, 340, 1529–1537.
Part of this research was undertaken on the SAXS/WAXS
beamline at the Australian Synchrotron, Victoria, Australia.
SMS and CEC were the recipients of CSIRO post-doctoral
fellowships. CJD was the recipient of an Australian Research
Council Federation Fellowship.
References
43 C. Fong, A. Weerawardena, S. M. Sagnella, X. Mulet,
I. Krodkiewska, J. Chong and C. J. Drummond, Langmuir,
2011, 27, 2317–2326.
1 H. L. Sanders, J. Am. Oil Chem. Soc., 1958, 35, 548–551.
2 M. E. Wittekin and J. H. Benedict, J. Am. Oil Chem. Soc., 1967,
44, 645–647.
c
13380 Phys. Chem. Chem. Phys., 2011, 13, 13370–13381
This journal is the Owner Societies 2011