Journal of the American Chemical Society
Page 8 of 9
Transfer. Nat. Rev. Chem. 2017, 1, 0077. (e) Tian, Y.; Chen, S.; Gu, Q.-S.;
representative examples, see: (e) Binder, J. T.; Cordier, C. J.; Fu, G. C. Cat-
alytic Enantioselective Cross-Couplings of Secondary Alkyl Electrophiles
with Secondary Alkylmetal Nucleophiles: Negishi Reactions if Racemic
Benzylic Bromides with Achiral Alkylzinc Reagents. J. Am. Chem. Soc. 2012,
134, 17003–17006. (f) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Cat-
alytic Asymmetric Reductive Acyl Cross-Coupling: Synthesis of Enantioen-
riched Acyclic α,α-Disubstituted Ketones. J. Am. Chem. Soc. 2013, 135,
7442–7445. (g) Zhu, R.; Buchwald, S. L. Enantioselective Functionalization
of Radical Intermediates in Redox Catalysis: Copper-Catalyzed Asymmetric
Oxytrifluoromethylation of Alkenes. Angew. Chem., Int. Ed. 2013, 52,
12655–12658. (h) Mao, J.; Liu, F.; Wang, M.; Wu, L.; Zheng, B.; Liu, S.;
Zhong, J.; Bian, Q.; Walsh, P. J. Cobalt–Bisoxazoline-Catalyzed Asymmetric
Kumada Cross-Coupling of Racemic α-Bromo Esters with Aryl Grignard Re-
agents. J. Am. Chem. Soc. 2014, 136, 17662–17668. (i) Gutierrez, O.; Tellis,
J. C.; Primer, D. N.; Molander, G. A.; Kozlowski, M. C. Nickel-Catalyzed
Cross-Coupling of Photoredox-Generated Radicals: Uncovering a General
Manifold for Stereoconvergence in Nickel-Catalyzed Cross-Couplings. J.
Am. Chem. Soc. 2015, 137, 4896–4899. (j) Jin, M.; Adak, L.; Nakamura, M.
Iron-Catalyzed Enantioselective Cross-Coupling Reactions of α-Chloroes-
ters with Aryl Grignard Reagents. J. Am. Chem. Soc. 2015, 137, 7128–7134.
(k) Schmidt, J.; Choi, J.; Liu, A. T.; Slusarczyk, M.; Fu, G. C. A General,
Modular Method for the Catalytic Asymmetric Synthesis of Alkylboronate
Esters. Science 2016, 354, 1265–1269. (l) Wang, Z.; Yin, H.; Fu, G. C. Cata-
lytic Enantioconvergent Coupling of Secondary and Tertiary Electrophiles
with Olefins. Nature 2018, 563, 379–383.
(6) For a review, see: (a) Gu, Q.-S.; Li, Z.-L.; Liu, X.-Y. Copper(I)-Cata-
lyzed Asymmetric Reactions Involving Radicals. Acc. Chem. Res. 2020, 53,
170–181. For selected examples, see: (b) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.;
Jiang, N.-C.; Tan, B.; Liu, X.-Y. A Dual-Catalytic Strategy to Direct Asym-
metric Radical Aminotrifluoromethylation of Alkenes. J. Am. Chem. Soc.
2016, 138, 9357–9360. (c) Ye, L.; Gu, Q.-S.; Tian, Y.; Meng, X.; Chen, G.-
C.; Liu, X.-Y. Radical Asymmetric Intramolecular α-Cyclopropanation of Al-
dehydes towards Bicyclo[3.1.0]hexanes Containing Vicinal All-Carbon
Quaternary Stereocenters. Nat. Commun. 2018, 9, 227. (d) Lin, J.-S.; Li, T.-
T.; Liu, J.-R.; Jiao, G.-Y.; Gu, Q.-S.; Cheng, J.-T.; Guo, Y.-L.; Hong, X.; Liu,
X.-Y. Cu/Chiral Phosphoric Acid-Catalyzed Asymmetric Three-Compo-
nent Radical-Initiated 1,2-Dicarbofunctionalization of Alkenes. J. Am. Chem.
Soc. 2019, 141, 1074–1083. (e) Ye, L.; Tian, Y.; Meng, X.; Gu, Q.-S.; Liu, X.-
Y. Enantioselective Copper(I)/Chiral Phosphoric Acid Catalyzed Intramo-
lecular Amination of Allylic and Benzylic C−H Bonds. Angew. Chem., Int. Ed.
2020, 59, 1129–1133.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Lin, J.-S.; Liu, X.-Y. Amino- and Azidotrifluoromethylation of Alkenes. Tet-
rahedron Lett. 2018, 59, 203–215. (f) Wang, K.; Kong, W. Recent Advances
in Transition Metal-Catalyzed Asymmetric Radical Reactions. Chin. J. Chem.
2
018, 36, 247–256. (g) Li, Z.-L.; Fang, G.-C.; Gu, Q.-S.; Liu, X.-Y. Recent
Advances in Copper-Catalysed Radical-Involved Asymmetric 1,2-Difunc-
tionalization of Alkenes. Chem. Soc. Rev. 2020, 49, 32–48. (h) Li, S.; Xiang,
S.-H.; Tab, B. Chiral Phosphoric Acid Creates Promising Opportunities for
Enantioselective Photoredox Catalysis. Chin. J. Chem. 2020, 38, 213−214.
(
2) For selected recent examples, see: (a) Liao, L.; Jana, R.; Urkalan, K.
B.; Sigman, M. S. A Palladium-Catalyzed Three-Component Cross-Cou-
pling of Conjugated Dienes or Terminal Alkenes with Vinyl Triflates and
Boronic Acids. J. Am. Chem. Soc. 2011, 133, 5784–5787. (b) Wu, X.; Lin, H.-
C.; Li, M.-L.; Li, L.-L.; Han, Z.-Y.; Gong, L.-Z. Enantioselective 1,2-Difunc-
tionalization of Dienes Enabled by Chiral Palladium Complex-Catalyzed
Cascade Arylation/Allylic Alkylation Reaction. J. Am. Chem. Soc. 2015, 137,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
3476–13479. (c) Yamamoto, E.; Hilton, M. J.; Orlandi, M.; Saini, V.;
Toste, F. D.; Sigman, M. S. Development and Analysis of a Pd(0)-Catalyzed
Enantioselective 1,1-Diarylation of Acrylates Enabled by Chiral Anion Phase
Transfer. J. Am. Chem. Soc. 2016, 138, 15877–15880. (d) Derosa, J.; Tran,
V. T.; Boulous, M. N.; Chen, J. S.; Engle, K. M. Nickel-Catalyzed β,γ-Dicar-
bofunctionalization of Alkenyl Carbonyl Compounds via Conjunctive
Cross-Coupling. J. Am. Chem. Soc. 2017, 139, 10657–10660. (e) Orlandi,
M.; Hilton, M. J.; Yamamoto, E.; Toste, F. D.; Sigman, M. S. Mechanistic
Investigations of the Pd(0)-Catalyzed Enantioselective 1,1-Diarylation of
Benzyl Acrylates. J. Am. Chem. Soc. 2017, 139, 12688–12695. (f) Gao, P.;
Chen, L.-A.; Brown, M. K. Nickel-Catalyzed Stereoselective Diarylation of
Alkenylarenes. J. Am. Chem. Soc. 2018, 140, 10653–10657. (g) Xiong, Y.;
Zhang, G. Enantioselective 1,2-Difunctionalization of 1,3-Butadiene by Se-
quential Alkylation and Carbonyl Allylation. J. Am. Chem. Soc. 2018, 140,
2
735–2738. (h) Wang, K.; Ding, Z.; Zhou, Z.; Kong, W. Ni-Catalyzed En-
antioselective Reductive Diarylation of Activated Alkenes by Domino Cy-
clization/Cross-Coupling. J. Am. Chem. Soc. 2018, 140, 12364–12368. (i)
Anthony, D.; Lin, Q.; Baudet, J.; Diao, T. Nickel-Catalyzed Asymmetric Re-
ductive Diarylation of Vinylarenes. Angew. Chem., Int. Ed. 2019, 58, 3198–
3
202. (j) Zhang, Z.; Zhu, L.; Li, C. Copper-Catalyzed Carbotrifluorometh-
ylation of Unactivated Alkenes Driven by Trifluoromethylation of Alkyl
Radicals. Chin. J. Chem. 2019, 37, 452–456.
(3) (a) Pu, L. Asymmetric Alkynylzinc Additions to Aldehydes and Ke-
tones. Tetrahedron 2003, 59, 9873–9886. (b) Acetylene Chemistry Chemistry,
Biology and Material Science; Diederich, F.; Stang, P. J.; Tykwinski, R. R.,
Eds.; WILEY-VCH: Weinheim, 2005. (c) Li, L.; Rui, W. Recent Advance in
Asymmetric Alkynylation of Ketones. Curr. Org. Chem. 2009, 13, 1565–
(7) Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-
L.; Jiang, S.-P.; Liu, X.-Y. A General Asymmetric Copper-Catalysed So-
3
1
576. (d) Modern Alkyne Chemistry Catalytic and Atom-Economic Transfor-
nogashira C(sp )–C(sp) Coupling. Nat. Chem. 2019, 11, 1158–1166.
mations; Trost, B. M.; Li, C.-J., Eds.; Wiley-VCH: Weinheim, 2015. (e)
Chinchilla, R.; Nájera, C. Chemicals from Alkynes with Palladium Catalysts.
Chem. Rev. 2014, 114, 1783–1826. (f) Wang, Z.-X.; Bai, X.-Y.; Li, B.-J. Re-
cent Progress of Transition-Metal-Catalyzed Enantioselective Hydroal-
kynylation of Alkenes. Synlett 2017, 28, 509–514. (g) Le Vaillant, F.; Waser,
J. Alkynylation of Radicals: Spotlight on the “Third Way” to Transfer Triple
Bonds. Chem. Sci. 2019, 10, 8909–8923.
(8) For selected examples, see: (a) Glaser, C. Beiträge zur Kenntnifs des
Acetenylbenzols. Ber. Dtsch. Chem. Ges. 1869, 2, 422–424. (b) Kamata, K.;
Yamaguchi, S.; Kotani, M.; Yamaguchi, K.; Mizuno, N. Efficient Oxidative
Alkyne Homocoupling Catalyzed by a Monomeric Dicopper-Substituted
Silicotungstate. Angew. Chem., Int. Ed. 2008, 47, 2407–2410. (c) Singh, M.;
Singh, A. S.; Mishra, N.; Agrahari, A. K.; Tiwari, V. K. Benzotriazole as an
Efficient Ligand in Cu-Catalyzed Glaser Reaction. ACS Omega 2019, 4,
2418–2424.
(9) For selected reviews, see: (a) Li, C.-J. Cross-Dehydrogenative Cou-
pling (CDC): Exploring C−C Bond Formations beyond Functional Group
Transformations. Acc. Chem. Res. 2009, 42, 335–344. (b) Girard, S. A.;
Knauber, T.; Li, C.-J. The Cross-Dehydrogenative Coupling of Csp3–H
Bonds: A Versatile Strategy for C–C Bond Formations. Angew. Chem., Int.
Ed. 2014, 53, 74–100. (c) Díez-González, S. Copper(I)–Acetylides: Access,
Structure, and Relevance in Catalysis. Adv. Organomet. Chem. 2016, 66, 93–
141.
(4) Fu, L.; Zhou, S.; Wan, X.; Chen, P.; Liu, G. Enantioselective Trifluo-
romethylalkynylation of Alkenes via Copper-Catalyzed Radical Relay. J. Am.
Chem. Soc. 2018, 140, 10965–10969.
(
5) For selected reviews, see: (a) Cherney, A. H.; Kadunce, N. T.; Reis-
man, S. E. Enantioselective and Enantiospecific Transition-Metal-Catalyzed
Cross-Coupling Reactions of Organometallic Reagents To Construct C–C
Bonds. Chem. Rev. 2015, 115, 9587–9652. (b) Choi, J.; Fu, G. C. Transition
Metal–Catalyzed Alkyl-Alkyl Bond Formation: Another Dimension in
Cross-Coupling Chemistry. Science 2017, 356, eaaf7230. (c) Fu, G. C. Tran-
sition-Metal Catalysis of Nucleophilic Substitution Reactions: A Radical Al-
(10) For selected reviews, see: (a) Patten, T. E.; Matyjaszewski, K. Cop-
per(I)-Catalyzed Atom Transfer Radical Polymerization. Acc. Chem. Res.
1999, 32, 895–903. (b) Tang, S.; Liu, K.; Liu, C.; Lei, A. Olefinic C–H Func-
tionalization through Radical Alkenylation. Chem. Soc. Rev. 2015, 44, 1070–
1082. (c) Boyer, C.; Corrigan, N. A.; Jung, K.; Nguyen, D.; Nguyen, T.-K.;
ternative to S
N
1 and S 2 Processes. ACS Cent. Sci. 2017, 3, 692–700. (d)
N
Wang, F.; Chen, P.; Liu, G. Copper-Catalyzed Radical Relay for Asymmetric
Radical Transformations. Acc. Chem. Res. 2018, 51, 2036–2046. For selected
ACS Paragon Plus Environment