10.1002/anie.201703438
Angewandte Chemie International Edition
COMMUNICATION
[3]
[4]
(a) O. Diels, K. Alder, Liebigs Ann. Chem. 1928, 460, 98-122. (b) J. G.
Martin, R. K. Hill, Chem. Rev. 1961, 61, 537-562. (c) X. Jiang, R. Wang,
Chem. Rev. 2013, 113, 5515-5546.
Dienophiles with cyclohexene unit, such as precocene I and 1-
(4-methoxyphenyl)-1-cyclohexene, are also active in this system
(13, 14, 15, and 16). Dienes with longer carbon chain are
suitable for this reaction as well, although with relatively lower
yield (17, 18, and 19). The reaction involving cyclohexadiene
gives no D-A product, repeatedly indicating the cationic radical
reaction mechanism, rather than the triplex D-A reaction.[8,14]
(a) A. Ledwith, Acc. Chem. Res. 1972, 5, 133-139. (b) D. J. Bellville, D.
W. Wirth, N. L. Bauld, J. Am. Chem. Soc. 1981, 103, 718-720. (c) N. L.
Bauld, D. J. Bellville, R. Pabon, R. Chelsky, G. Green, J. Am. Chem.
Soc. 1983, 105, 2378-2382. (d) D. J. Bellville, N. L. Bauld, R. Pabon, S.
A. Gardner, J. Am. Chem. Soc. 1983, 105, 3584-3588. (e) C. R. Jones,
B. J. Allman, A. Mooring, B. Spahic, J. Am. Chem. Soc. 1983, 105, 652-
654. (f) N. L. Bauld, D. J. Bellville, B. Harirchian, K. T. Lorenz, R. A.
Pabon, D. W. Reynolds, D. D. Wirth, H. S. Chiou, B. K. Marsh, Acc.
Chem. Res. 1987, 20, 371-378. (g) W. Yueh, N. L. Bauld, J. Phys. Org.
Chem. 1996, 9, 529-538.(h) N. J. Saettel, O. Wiest, D. A. Singleton, M.
P. Meyer, J. Am. Chem. Soc. 2002, 124, 11552-11559. (i) C. S. Sevov,
O. Wiest, J. Org. Chem. 2008, 73, 7909-7915.
In summary, we have developed
a
heterogeneous
photocatalytic system with low cost, metal-free g-C3N4 sheets for
visible light harvesting and conversion. D-A reactions with
electron-rich dienophiles could be efficiently realized, and the
apparent quantum yield reaches a remarkable value of 47%.
Dioxygen plays a critical role as an active electron mediator
(0.05 equiv. O2 for 1 equiv. of olefin) in this photo-redox system;
and the reaction is overwhelmingly dominated by dioxygen
mediated reaction pathway. In addition, the reaction
intermediate of vinylcyclobutane is captured and monitored
during the reaction, serving as a direct evidence for the
proposed reaction mechanism. The cycloaddition process is
thereby presumably a combination of direct [4 + 2] cycloaddition
[5]
(a) S. Lin, M. A. Ischay, C. G. Fry, T. P. Yoon, J. Am. Chem. Soc. 2011,
133, 19350-19353. (b) S. M. Stevenson, R. F. Higgins, M. P. Shores, E.
M. Ferreira, Chem. Sci. 2017, 8, 654-660. (c) S. M. Stevenson, M. P.
Shores, E. M. Ferreira, Angew. Chem. Int. Ed. 2015, 54, 6506-6510;
Angew. Chem. 2015, 127, 6606-6610. (d) A. E. Hurtley, M. A. Cismesia,
M. A. Ischay, T. P. Yoon, Tetrahedron 2011, 67, 4442-4448. (e) R. F.
Higgins, S. M. Fatur, S. G. Shepard, S. M. Stevenson, D. J. Boston, E.
M. Ferreira, N. H. Damrauer, A. K. Rappe, M. P. Shores, J. Am. Chem.
Soc. 2016, 138, 5451-5464.
and
a [2 + 2] cycloaddition followed by photocatalytic
rearrangement of the vinylcyclobutane. There are some unique
advantages from this system, such as the heterogeneous metal-
free photocatalyst being low cost and environmental benign,
visible light being the energy input, and the aerobic reaction
condition, which endow this protocol with significance in
potential heterogeneous photocatalytic synthetic utility.
[6]
(a) X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M.
Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76-80. (b) W. J.
Ong, L. L. Tan, Y. H. Ng, S. T. Yong, S. P. Chai, Chem. Rev. 2016, 116,
7159-7329. (c) Y. Zheng, L. Lin, B. Wang, X. Wang, Angew. Chem. Int.
Ed. 2015, 54, 12868-12884; Angew. Chem. 2015, 127, 13060-13077.
(d) C. A. Caputo, M. A. Gross, V. W. Lau, C. Cavazza, B. V. Lotsch, E.
Reisner, Angew. Chem. Int. Ed. 2014, 53, 11538-11542; Angew. Chem.
2014, 126, 11722-11726.
[7]
R. I. Samoilova, A. R. Crofts, S. A. Dikanov, J. Phys. Chem. A 2011,
115, 11589-11593.
Acknowledgements
[8]
[9]
N. L. Bauld, Tetrahedron 1989, 45, 5307-5363.
(a) S. Horstmann, A. Grybat, R. Kato, J. Chem. Thermodyn. 2004, 36,
1015-1018. (b) J. M. Achord, C. L. Hussey, Anal. Chem. 1980, 52, 601-
602.
YZ acknowledges the scholarship from Max Planck Society. The
authors thank the German Excellence Cluster Unicat/Berlin for
support.
[10] Q. Li, C. Batchelor-McAuley, N. S. Lawrence, R. S. Hartshorne, R. G.
Compton, J. Electroanal. Chem. 2013, 688, 328-335. (b) V. V.
Pavlishchuk, A. W. Addison, Inorg. Chim. Acta 2000, 298, 97-102.
[11] (a) R. A. Pabon, D. J. Bellville, N. J. Bauld, J. Am. Chem. Soc. 1984,
106, 2730-2731. (b) M. Riener, D. A. Nicewicz, Chem. Sci. 2013, 4,
2625-2629.
Keywords: Photocatalysis • Graphitic Carbon Nitride • Visible
Light Irradiation • Electron Mediator • Diels-Alder Reaction
[1]
(a) H. Kisch, Angew. Chem. Int. Ed. 2013, 52, 812-847; Angew. Chem.
2013, 125, 842-879. (b) H. Kisch, In Semiconductor Photocatalysis;
Wiley-VCH Verlag GmbH & Co. KGaA: 2015, p I-XIV. (c) M. Fagnoni, D.
Dondi, D. Ravelli, A. Albini, Chem. Rev. 2007, 107, 2725-2756. (d) K. E.
Ruhl, T. Rovis, T. J. Am. Chem. Soc. 2016, 138, 15527-15530. (e) Y.
Zou, Y. L. Lu, L. Fu, N. Chang, J. Rong, J. Chen, W. Xiao, Angew.
Chem. Int. Ed. 2011, 50, 7171-7175; Angew. Chem. 2011, 123, 7309
7313. (f) M. A. Fox, M. T. Dulay, Chem. Rev. 1993, 93, 341-357.
(a) D. M. Schultz, T. P. Yoon, Science 2014, 343, 1239176. (b) T. P.
Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2, 527-532. (c) J. C. K.
Chu, T. Rovis, Nature 2016, 539, 272-275. (d) C. Dai, J. M. R.
Narayanam, C. R. J. Stephenson, Nat. Chem. 2011, 3, 140-145. (e) C.
Hao, X. Guo, Y. Pan, S. Chen, Z. Jiao, H. Yang, X. Guo, J. Am. Chem.
Soc. 2016, 138, 9361-9364.
[12] (a) J. Du, T. P. Yoon, J. Am. Chem. Soc. 2009, 131, 14604-14605. (b)
M. A. Ischay, M. S. Ament, T. P. Yoon, Chem. Sci. 2012, 3, 2807-2811.
(c) M. Riener, D. A. Nicewicz, Chem. Sci. 2013, 4, 2625-2629. (d) C.
Demaille, A. J. Bard, Acta Chem. Scand. 1999, 53, 842-848.
[13] D. W. Reynolds, B. Harirchian, H. S. Chiou, B. K. Marsh, N. L. Bauld, J.
Phys. Org. Chem. 1989, 2, 57-88.
[14] (a) N. Akbulut, D. Hartsough, J. I. Kim, G. B. Schuster, J. Org. Chem.
1989, 54, 2549-2556. (b) J. Mattay, G. Trampe, J. Runsink, Chem. Ber.
1988, 121, 1991-2005.
[2]
This article is protected by copyright. All rights reserved.