First author et al.
Report
cycloadducts could selectively be recovered in the upper
Me-c-Hex phase under the biphasic condition at -50 C, realizing
Advances in Organic Electrochemical C—H Functionalization. Chin. J.
Chem. 2018, 36, 338–352.
o
facile separation processes and the recycling of the supporting
electrolyte. We believe that the thermomorphic system described
herein should find further applications for electrochemical
reactions for hydrophobic substrates.
[2] For selected reviews, see: (a) Ischay, M. A.; Yoon, T. P. Accessing the
Synthetic Chemistry of Radical Ions. Eur. J. Org. Chem. 2012,
3359−3372. (b) Studer, A.; Curran, D. P. The electron is a catalyst.
Nat. Chem. 2014, 6, 765−773. (c) Fukuzumi, S.; Ohkubo, K. Organic
synthetic transformations using organic dyes as photoredox catalysts.
Org. Biomol. Chem. 2014, 12, 6059–6071. (d) Luca, O. R.; Gustafson, J.
L.; Maddox, S. M.; Fenwicka, A. Q.; Smith, D. C. Catalysis by electrons
and holes: formal potential scales and preparative organic
electrochemistry. Org. Chem. Front. 2015, 2, 823–848. (e) Qiu, G.; Li,
Y.; Wu, J. Recent developments for the photoinduced Ar–X bond
dissociation reaction. Org. Chem. Front. 2016, 3, 1011–1027.
[3] Francke, R.; Little, R. D. Redox catalysis in organic electrosynthesis:
basic principles and recent developments. Chem. Soc. Rev. 2014, 43,
2492–2521.
[4] For selected examples, see: (a) Beil, S. B.; Müller, T.; Sillart, S. B.;
Franzmann, P.; Bomm, A.; Holtkamp, M.; Karst, U.; Schade, W.;
Waldvogel, S. R. Active Molybdenum ‐ Based Anode for
Dehydrogenative Coupling Reactions. Angew. Chem., Int. Ed. 2018,
57, 2450–2454. (b) Gütz, C.; Selt, M.; Bänziger, M.; Bucher, C.;
Römelt, C.; Hecken, N.; Gallou, F.; Galvão, T. R.; Waldvogel, S. R. A
Novel Cathode Material for Cathodic Dehalogenation of 1,1 ‐
Dibromo Cyclopropane Derivatives. Chem. Eur. J. 2015, 21, 13878–
13882. (c) Kulisch, J.; Nieger, M.; Stecker, F.; Fischer, A.; Waldvogel, S.
R. Efficient and Stereodivergent Electrochemical Synthesis of
Optically Pure Menthylamines. Angew. Chem., Int. Ed. 2011, 50,
5564–5567. (d) Malkowsky, I. M.; Griesbach, U.; Pütter, H.;
Waldvogel, S. R. Unexpected Highly Chemoselective Anodic
ortho-Coupling Reaction of 2,4-Dimethylphenol on Boron-Doped
Diamond Electrodes. Eur. J. Org. Chem. 2006, 4569–4572. (e) Zhao,
H.-B.; Xu, P.; Song, J.; Xu, H.-C. Cathode Material Determines Product
Selectivity for Electrochemical C−H Functionalization of Biaryl
Ketoximes. Angew. Chem., Int. Ed. 2018, 57, 15153–15156. (f) Imada,
Y.; Okada, Y.; Noguchi, K.; Chiba, K. Selective Functionalization of
Styrenes with Oxygen Using Different Electrode Materials: Olefin
Cleavage and Synthesis of Tetrahydrofuran Derivatives. Angew.
Chem., Int. Ed. 2019, 58, 125–129.
Experimental
General Procedure for Electrocatalytic Diels-Alder Reactions.
To a solution of LiTFSI/PrNO2 (5 mL), the dienophile (0.10 mmol in
5 mL Me-c-Hex) and the diene (3 mol equiv.) were added. Two
pieces of carbon felt were inserted into the solution and
electrolysis was performed using an undivided cell with stirring at
a constant potential of 1.0 V vs. Ag/AgCl at room temperature. A
catalytic amount of electric charge was passed through the
solution (the reactions can also be monitored by TLC), followed by
cooling to -50 oC to form a biphasic condition. The upper
Me-c-Hex phase was concentrated in vacuo to give the respective
cycloadducts.
Supporting Information
The supporting information for this article is available on the
Acknowledgement
This work was partially supported by JSPS KAKENHI Grant
Numbers 15H04494, 17K19222 (to K.C.), 16H06193, and
17K19221 (to Y.O.).
References
[1] For recent reviews, see: (a) Kärkäs, M. D. Electrochemical strategies
for C-H functionalization and C-N bond formation. Chem. Soc. Rev.
2018, 47, 5786–5865. (b) Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff,
T.; Wiebe, A.; Waldvogel, S. R. Modern Electrochemical Aspects for
the Synthesis of Value-Added Organic Products. Angew. Chem., Int.
Ed. 2018, 57, 6018–6041. (c) Wiebe, A.; Gieshoff, T.; Möhle, S.;
Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Electrifying Organic Synthesis.
Angew. Chem., Int. Ed. 2018, 57, 5594–5619. (d) Waldvogel, S. R.;
Lips, S.; Selt, M.; Riehl, B.; Kampf, C. J. Electrochemical Arylation
Reaction. Chem. Rev. 2018, 118, 6706–6765. (e) Nutting, J. E.; Rafiee,
M.; Stahl, S. S. Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide
N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical
Properties and Their Use in Electrocatalytic Reactions. Chem. Rev.
2018, 118, 4834–4885. (f) Yoshida, J.; Shimizu, A.; Hayashi, R.
Electrogenerated Cationic Reactive Intermediates: The Pool Method
and Further Advances. Chem. Rev. 2018, 118, 4702–4730. (g) Jiang,
Y.; Xu, K.; Zeng, C. Use of Electrochemistry in the Synthesis of
Heterocyclic Structures. Chem. Rev. 2018, 118, 4485–4540. (h) Yan,
M.; Kawamata, Y.; Baran, P. S. Synthetic Organic Electrochemical
Methods Since 2000: On the Verge of a Renaissance. Chem. Rev.
2017, 117, 13230–13319. (i) Feng, J.; Zeng, S.; Feng, J.; Dong, H.;
Zhang, X. CO2 Electroreduction in Ionic Liquids: A Review. Chin. J.
Chem. 2018, 36, 961–970. (j) Yang, Q.-L.; Fang, P.; Mei, T.-S. Recent
[5] For selected examples, see: (a) Horcajada, R.; Okajima, M.; Suga, S.;
Yoshida, J. Microflow electroorganic synthesis without supporting
electrolyte. Chem. Commun. 2005, 1303–1305. (b) Tajima, T.;
Fuchigami, T. Development of an Electrolytic System Using
Solid-Supported Bases for in Situ Generation of
a Supporting
Electrolyte from Methanol as a Solvent. J. Am. Chem. Soc. 2005, 127,
2848–2849. (c) Tajima, T.; Fuchigami, T. An Electrolytic System That
Uses Solid-Supported Bases for In Situ Generation of a Supporting
Electrolyte from Acetic Acid Solvent. Angew. Chem., Int. Ed. 2005, 44,
4760–4763. (d) Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T.
Use of Task-Specific Ionic Liquid for Selective Electrocatalytic
Fluorination. Org. Lett. 2010, 12, 644–646.
[6] (a) Chiba, K.; Kono, Y.; Kim, S.; Nishimoto, K.; Kitano, Y.; Tada, M. A
liquid-phase peptide synthesis in cyclohexane-based biphasic
thermomorphic systems. Chem. Commun. 2002, 1766–1767. (b)
Hayashi, K.; Kim, S.; Kono, Y.; Tamura, M.; Chiba, K.
Microwave-promoted Suzuki–Miyaura coupling reactions in
a
cycloalkane-based thermomorphic biphasic system. Tetrahedron Lett.
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2019, 37, XXX-XXX
This article is protected by copyright. All rights reserved.