4820 J. Phys. Chem. B, Vol. 114, No. 14, 2010
Basilio et al.
lower than those of conventional surfactants and comparable
to those of other amphiphilic calixarenes and gemini surfactants.
Acknowledgment. This work was supported by the Minis-
terio de Ciencia y Tecnolog´ıa (Project CTQ2008-04420/BQU)
and Xunta de Galicia (PGIDIT07-PXIB209041PR). N.B. ac-
knowledges FCT for a Ph.D. Grant (SFRH/BD/29218/2006).
References and Notes
(1) Tanford, C. The Hydrophobic Effect: Formation of Micelles and
Biological Membranes; Wiley-Interscience: New York, 1973.
(2) Frindi, M.; Michels, B.; Zana, R. J. Phys. Chem. 1994, 98, 6607–
6611.
(3) Frindi, M.; Michel, B.; Levy, H.; Zana, R. Langmuir 1994, 10,
1140, and refs. therein.
(4) Ulbricht, W.; Zana, R. Colloids Surf. A 2001, 183, 487–494.
(5) Muller, N. J. Phys. Chem. 1972, 76, 3017–3020.
(6) Groth, C.; Nyden, M.; Holmberg, K.; Kanicky, J. R.; Shah, D. O.
J. Surfactants Deterg. 2004, 7, 247–255.
Figure 5. Arrhenius plot for the SC4TH monomer-micelle exchange
rate. [SC4TH] ) 1 mM in D2O.
(7) Huc, I.; Oda, R. Chem. Commun. 1999, 20, 2025–2026.
(8) Cui, X. H.; Yang, X. Y.; Chen, H.; Liu, A. H.; Mao, S. Z.; Liu,
M. L.; Yuan, H. Z.; Luo, P. Y.; Du, Y. R. J. Phys. Chem. B 2008, 112,
2874–2879.
(9) Kondo, Y.; Miyazawa, H.; Sakai, H.; Abe, M.; Yoshino, N. J. Am.
Chem. Soc. 2002, 124, 6516–6517.
(10) Bo¨hmer, V. Angew. Chem., Int. Ed. Engl. 1995, 34, 713–745.
(11) Shinkai, S.; Mori, S.; Koreishi, H.; Tsubaki, T.; Manabe, O. J. Am.
Chem. Soc. 1986, 108, 2409–2416.
(12) Arimori, S.; Nagasaki, T.; Shinkai, S. J. Chem. Soc., Perkin Trans.
2 1995, 679–683.
(13) Strobel, M.; Kita-Tokarczyk, K.; Taubert, A.; Vebert, C.; Heiney,
P. A.; Chami, M.; Meier, W. AdV. Funct. Mater. 2006, 16, 252–259.
(14) Kellermann, M.; Bauer, W.; Hirsch, A.; Schade, B.; Ludwig, K.;
Bottcher, C. Angew. Chem. 2004, 43, 2959–2962.
(15) Lee, M.; Lee, S. J.; Jiang, L. H. J. Am. Chem. Soc. 2004, 126,
12724–12725.
(16) Houmadi, S.; Coquie`re, D.; Legrand, L.; Faure´, M. C.; Goldmann,
M.; Reinaud, O.; Re´mita, S. Langmuir 2007, 23, 4849–4855.
(17) Consoli, G. M. L.; Granata, G.; Nigro, R. L.; Malandrino, G.;
Geraci, C. Langmuir 2008, 24, 6194–6200.
be observed, the exchange rate follows Arrhenius behavior and
from the slope of the linear fit to the experimental data points
we obtained an activation energy of 27.6 kJ mol-1. For the sake
of comparison, we applied the same treatment to the amphiphilic
nucleotide-calix[4]arene dimer-micelle exchange rates given in
ref 17. The representation of ln k against 1/T shows linear
behavior with an activation energy of 46.2 kJ mol-1 obtained.
The activation energy for this system is higher than that obtained
in this work for SC4TH, possibly reflecting the fact that
surfactant molecules are in a more stable dimerized form
(involving a higher energy difference between the dimer and
the transition state of the process). A more likely explanation
could be the fact that the hydrophobic moiety of these
calixarenes is based on the highly bulky tert-butyl calixarene
cavity rather than on more flexible alkyl chains, thus slowing
the interchange between free and micellized surfactant molecules
due to steric effects.
(18) Sansone, F.; Dudicˇ, M.; Donofrio, G.; Rivelli, C.; Baldini, L.;
Casnati, A.; Cellai, S.; Ungaro, R. J. Am. Chem. Soc. 2006, 128, 14528–
14536.
(19) (a) Karakhanov, E.; Buchneva, T.; Maximov, A.; Zavertyaeva, M.
J. Mol. Catal. A 2002, 184, 11–17. (b) Tian, H. Y.; Li, H. J.; Chen, Y. J.;
Wang, D.; Li, C. J. 2002, 41, 4523–4527. (c) Jin, T.; Fujii, F.; Sakata, H.;
Tamura, M.; Kinjo, M. Chem. Commun. 2005, 4300–4302.
(20) Wu, D.; Chen, A.; Johnson, C. S. J. Magn. Reson. 1995, 115, 260–
264.
(21) Kalyanasundaram, K.; Thomas, J. K. J. Am. Chem. Soc. 1977, 99,
2039–2044.
(22) Calixerenes; Asfari, Z., Bohmer, V., Harrowfield, J., Vicens, J.,
Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001.
(23) Shinkai, S.; Arimura, T.; Araki, K.; Kawabata, H.; Satoh, H.;
Tsubaki, T.; Manabe, O.; Sunamoto, J. J. Chem. Soc., Perkin Trans. I 1989,
2039–2045.
Conclusions
In this study, we examined the aggregation properties of
p-sulfonatocalix[4]arene tetrahexyl ether by means of NMR
techniques and using pyrene as a fluorescence probe. The cmc
was determined by fluorescence and DOSY techniques. The
slight discrepancy between the two values obtained was
attributed to known differences between H2O and D2O. In
addition, diffusion experiments allowed us to confirm that this
surfactant forms micelles in solution with a hydrodynamic radius
of 4.27 nm. We also found that in contrast to conventional
surfactants the exchange rate between free monomers in solution
and those in the micelle is slow on the NMR time scale. The
rate constants were determined using 2D EXSY experiments
and these constants were found to be several orders of magnitude
(24) Perrin, C. L.; Dwyer, T. J. Chem. ReV. 1990, 90, 935–967.
(25) Evans, D. F.; Wennerstro¨m, H. The Colloidal Domain. Where
Physics, Chemistry, and Biology Meet; Wiley-VCH: New York, 1999;
Chapter 4.
JP910984G