ꢀ
GONZALEZ-GALLARDO ET AL.
8 of 9
ꢀ
ꢀ
Ramon, Eur. J. Org. Chem. 2016, 612; c) D. J. Ramon, G.
Guillena, Deep Eutectic Solvents: Synthesis, Properties, and
Applications, Weinheim, Wiley-VCH 2019; d) F. M. Perna, P.
Vitale, V. Capriati, Curr. Opin. Green Sustain. Chem. 2020, 21,
27; e) L. Cicco, G. Dilauro, F. M. Perna, P. Vitale, V. Capriati,
Org. Biomol. Chem. 2021, 19, 2558; f) B. B. Hansen, S. Spittle,
B. Chen, D. Poe, Y. Zhang, J. M. Klein, A. Horton, L.
Adhikari, T. Zelovich, B. W. Doherty, B. Gurkan, E. J.
Maginn, A. Ragauskas, M. Dadmun, T. A. Zawodzinski, G. A.
Baker, M. E. Tuckerman, R. F. Savinell, J. R. Sangoro, Chem.
Rev. 2021, 121, 1232; g) D. Yu, Z. Xue, T. Mu, Chem. Soc. Rev.
2021, 50, 8596.
CONFLICT OF INTEREST
The authors declare no competing financial interest.
AUTHOR CONTRIBUTIONS
ꢀ
Nerea Gonzalez-Gallardo: Formal analysis; methodol-
ogy. Beatriz Saavedra: Formal analysis; methodology.
Gabriela Guillena: Conceptualization; investigation;
methodology. Diego J. Ramon: Conceptualization;
ꢀ
funding
acquisition;
investigation;
methodology;
supervision.
ꢀ
ꢀ
[9] a) C. Vidal, J. García-Alvarez, A. Hernan-Gomez, A. R.
DATA AVAILABILITY STATEMENT
Data are available in the Supporting Information.
Kennedy, E. Hevia, Angew. Chem., Int. Ed. 2014, 53, 5969;
ꢀ
ꢀ
b) C. Vidal, J. García-Alvarez, A. Hernan-Gomez, A. R.
Kennedy, E. Hevia, Angew. Chem., Int. Ed. 2016, 55, 16145;
c) E. Hevia, Chimia 2020, 74, 681; d) L. Cicco, A. Fombona-
ORCID
ꢀ
ꢀ
Pascual, A. Sanchez-Condado, G. A. Carriedo, F. M. Perna, V.
ꢀ
Capriati, A. P. Soto, J. García-Alvarez, ChemSusChem 2020,
13, 4967; e) G. Dilauro, C. S. Azzollini, P. Vitale, A. Salomone,
F. M. Perna, V. Capriati, Angew. Chem., Int. Ed. 2021, 60,
10632; f) F. M. Perna, P. Vitalea, V. Capriati, Curr. Opin. Green
Sust. Chem. 2021, 30, 100487-(+7); g) S. E. García-Garrido,
ꢀ
A. P. Soto, E. Hevia, J. García-Alvarez, Eur. J. Inorg. Chem.
ꢀ
[10] a) A. Jõgi, U. Mäeorg, Molecules 2001, 6, 964; b) A. Hui, X. Xu,
Z. Zha, C. Zhou, Z. Wang, ARKIVOC 2004, 9, 52.
REFERENCES
[11] a) L. Tussa, C. Lebreton, P. Mosset, Chem. – Eur. J. 1997, 3,
1064; b) J.-H. Lee, Y.-S. Park, M.-H. Nam, S.-H. Lee, M.-Y.
Cho, C.-M. Yoon, Bull. Korean Chem. Soc. 2005, 26, 496;
c) Z. L. Shen, S. Y. Wang, Y. K. Chok, Y. H. Xu, T. P. Loh,
Chem. Rev. 2013, 113, 271.
[1] a) M. Holmes, L. A. Schwartz, M. J. Krische, Chem. Rev. 2018,
118, 6026; b) K. Spielmann, G. Niel, R. Marcia de Figueiredo,
J.-M. Campagne, Chem. Soc. Rev. 2018, 47, 1159.
[2] K. Zheng, C. Xie, R. Hong, Front. Chem. 2015, 3, 1.
[3] A. K. Singh, Synlett 2013, 24, 1457.
[12] a) Q. Wen, J.-X. Chen, Y.-L. Tang, J. Wang, Z. Yang, Chemo-
sphere 2015, 132, 63; b) J. Torregrosa-Crespo, X. Marset, G.
[4] a) P. Barbier, Compt. Rend. 1899, 128, 110; b) J. Otera, in Mod-
ern Carbonyl Chemistry, (Eds: S. E. Denmark, N. G. Almstead),
Wiley-VCH, Weinheim, Germany 2000; c) C. J. Li, in Organic
Reactions in Water: Principles, Strategies and Applications, (Ed:
U. M. Lindstrom), Blackwell, Oxford, UK 2007; d) T.
Kitanosono, K. Masuda, P. Xu, S. Kobayashu, Chem. Rev. 2018,
118, 679; e) C. M. Gordon, C. Ritchiea, Green Chem. 2002, 4,
124; f) L. Tang, L. Ding, W.-X. Chang, J. Li, Tetrahedron Lett.
2006, 47, 303; g) T. D. Haddad, L. C. Hirayama, B. Singaram,
J. Org. Chem. 2010, 75, 642; h) R. Slaton, A. Petrone, R.
Manchanayakage, Tetrahedron Lett. 2011, 52, 5073; i) D.
Goswami, A. Sharma, A. Chattopadhyay, S. Chattopadhyay,
J. Org. Chem. 2012, 77, 11064; j) D. Goswami, M. R. Koli, S.
Chatterjee, S. Chattopadhyaya, A. Sharma, Org. Biomol. Chem.
2017, 15, 3756; k) P. Dey, M. Koli, D. Goswami, A. Sharma, S.
Chattopadhyay, Eur. J. Org. Chem. 2018, 1333; l) Y. Z. Jin, N.
Yasuda, H. Furuno, J. Inanaga, Tetrahedron Lett. 2003, 44,
8765; m) Y. Zhang, X. Jia, J.-X. Wang, Eur. J. Org. Chem. 2009,
2983; n) S. Li, J.-X. Wang, X. Wen, X. Ma, Tetrahedron 2011,
67, 849.
ꢀ
Guillena, D. J. Ramon, R. M. Martínez-Espinosa, Sci. Total
Environ. 2020, 704, 135382-(+8).
[13] G. Dilauro, A. F. Quivelli, P. Vitale, V. Capriati, F. M. Perna,
Angew. Chem., Int. Ed. 2019, 58, 1799.
[14] B. Mondal, U. K. Roy, Tetrahedron 2021, 90, 132169.
ꢀ
[15] J. García-Alvarez, E. Hevia, V. Capriati, Chem. – Eur. J. 2018,
24, 14854.
[16] a) R. Wada, K. Oisake, M. Kanai, M. Shibasaki, J. Am. Chem.
Soc. 2004, 126, 8910; b) K. R. Fandrick, D. R. Fandrick, J. J.
Gao, J. T. Reeves, Z. Tan, W. Li, J. J. Song, B. Lu, N. K. Yee,
C. H. Senanayake, Org. Lett. 2010, 12, 3748.
[17] P. T. Anastas, R. L. Lankey, Green Chem. 2000, 2, 289.
[18] D. Prat, O. Pardigon, H.-W. Flemming, S. Letestu, V.
Ducandas, P. Isnard, E. Guntrum, T. Senac, S. Ruisseau, P.
Cruciani, P. Hosek, Org. Process Res. Dev. 2013, 17, 1517.
[19] Z.-L. Shen, Y.-L. Yeo, T.-P. J. Loh, Org. Chem. 2008, 73, 3922.
[20] J. H. Dam, P. Fristrup, R. Madsen, J. Org. Chem. 2008, 73,
3228.
[21] Y. Kimura, D. Kanda, M. Terazima, N. Hirota, J. Phys. Chem.
B 1997, 101, 4442.
[22] M. K. AlOmar, M. Hayyan, M. A. Alsaadi, S. Akib, A. Hayyan,
M. A. Hashim, J. Mol. Liq. 2016, 215, 98.
[5] A. Chanda, V. V. Fokin, Chem. Rev. 2009, 109, 725.
[6] a) T. P. Thuy Pham, C.-W. Cho, Y.-S. Yun, Water Res. 2010,
44, 352; b) K. S. Egorova, V. P. Ananikov, ChemSusChem
2014, 7, 336.
[23] a) J. T. Barry, D. J. Berg, D. R. Tyler, J. Am. Chem. Soc. 2016,
138, 9389; b) J. T. Barry, D. J. Berg, D. R. Tyler, J. Am. Chem.
Soc. 2017, 139, 14399; c) S. L. Shevick, C. V. Wilson, S.
[7] P. J. Dyson, P. G. Jessop, Catal. Sci. Technol. 2016, 6, 3302.
ꢀ
[8] a) J. García-Alvarez, Eur. J. Inorg. Chem. 2015, 5147; b) D. A.
Alonso, A. Baeza, R. Chinchilla, G. Guillena, I. M. Pastor, D. J.