C O M M U N I C A T I O N S
Table 2. Functional Group Tolerance under Optimized Conditions
tion by the titanocene(III) reagents and radical reduction by the
rhodium hydrides are fully compatible. For both 4 and 19, the
isolated yields of the products are similar to the reactions with 5
equiv of the hydrogen atom donors such as cyclohexadienes. Thus,
radical reduction by rhodium hydrides is as efficient as titanocene-
catalyzed radical generation.
15
In summary, we have presented the first system of combined
catalytic cycles for a sustainable reduction of radicals. Our approach
unites titanocene-catalyzed reductive epoxide opening with the
2
powerful rhodium-catalyzed H activation and hydrogen atom
transfer. Because of their different affinities toward the substrates
and ligands, the early and late transition metal catalysts are mutually
compatible. Epoxide opening tolerates a number of functional
groups incompatible with nucleophilic ring opening by hydride
reagents. The regioselectivity of ring opening is complementary to
N
S 2 reactions. Moreover, opening of meso-epoxides occurs with
high enantioselectivity.
Acknowledgment. We thank the Alexander von Humboldt-
Stiftung (Forschungsstipendium to C.-A.F.) for financial support.
Supporting Information Available: Experimental details and
compound characterization. This material is available free of charge
via the Internet at http://pubs.acs.org.
a
References
See Supporting Information for details.
(
1) (a) Zard, S. Z. Radical Reactions in Organic Synthesis; Oxford University:
Oxford, 2003. (b) McCarroll, A. J.; Walton, J. C. Angew. Chem., Int. Ed.
Table 3. Catalytic Enantioselective Epoxide Opening
2
001, 40, 2225–2250.
(
2) (a) Baguley, P. A.; Walton, J. C. Angew. Chem. Int. Ed. 1998, 37, 3072–
3
2
082. (b) Gilbert, B. C.; Parsons, A. F. J. Chem. Soc., Perkin Trans. 2
002, 367–387. (c) Studer, A.; Amrein, S. Synthesis 2002, 835–849.
(
3) (a) Spiegel, D. A.; Wiberg, K. B.; Schacherer, L. N.; Medeiros, M. R.;
Wood, J. L. J. Am. Chem. Soc. 2005, 127, 12513–12515. (b) Renaud, P.
J. Am. Chem. Soc. 2005, 127, 14204–14205. (c) Cuerva, J. M.; Campa n˜ a,
A. G.; Justicia, J.; Rosales, A.; Oller-L o´ pez, J. L.; Robles, R.; C a´ rdenas,
D. J.; Bu n˜ uel, E.; Oltra, J. E. Angew. Chem., Int. Ed. 2006, 45, 5522–
5
526.
(
(
4) Trost, B. M. Science 1991, 254, 1471–1477.
5) (a) Knowles, W. S. Angew. Chem., Int. Ed. 2002, 41, 1998–2007. (b)
Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008–2022. (c) Jang, H. Y.;
Krische, M. J. Acc. Chem. Res. 2004, 37, 653–661. (d) For a recent
compilation of reviews, see: Acc. Chem. Res., 2007, 40, 1237–1419.
6) (a) RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1994, 116, 986–
997. (b) Gans a¨ uer, A.; Bluhm, H.; Pierobon, M. J. Am. Chem. Soc. 1998,
120, 12849–12859. (c) Gans a¨ uer, A.; Narayan, S. AdV. Synth. Catal. 2002,
a
entry
substrate
5/mol %
product
yield
(R):(S)
1
2
3
17
20
22
10
5
5
18
21
23
60
64
75
93:7
97:3
96:4
(
3
44, 465–475.
a
(7) (a) Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Chem.
Soc. A 1965, 1711–1732.
(
Measured by GC analysis of the isolated products (see Supporting
Information).
8) Smith, D. M.; Pulling, M. E.; Norton, J. R. J. Am. Chem. Soc. 2007, 129,
7
70–771.
We next turned our attention to the compatibility of our reaction
conditions with different functional groups and epoxide substitution
patterns. These results are summarized in Table 2.
The reaction conditions tolerate sensitive functionality. Ac-
etophenone can be reisolated in 87% yield when added to the
reduction of 3, while the yield of 6 remains essentially unchanged
(9) (a) Drago, R. S.; Miller, J. G.; Hoseton, M. A.; Farris, R. D.; Desmond,
M. J. J. Am. Chem. Soc. 1983, 105, 444–449. (b) Martinho Sim o˜ es, J. A.;
Beauchamp, J. L. Chem. ReV. 1990, 90, 629–688.
(
10) (a) Eisenberg, D. C.; Lawrie, C. J. C.; Moody, A. E.; Norton, J. R. J. Am.
Chem. Soc. 1991, 113, 4888–4895. (b) Eisenberg, D. C.; Norton, J. R. Isr.
J. Chem. 1991, 31, 55–66.
(
11) (a) Bakac, A.; Thomas, L. M. Inorg. Chem. 1996, 35, 5880–5884. (b) Bakac,
A. Inorg. Chem. 1998, 37, 3548–3552.
(
12) (a) Daasbjerg, K.; Svith, H.; Grimme, S.; Gerenkamp, M.; M u¨ ck-
Lichtenfeld, C.; Gans a¨ uer, A.; Barchuk, A.; Keller, F. Angew. Chem., Int.
Ed. 2006, 45, 2041–2044. (b) Gans a¨ uer, A.; Barchuk, A.; Keller, F.; Schmitt,
M.; Grimme, S.; Gerenkamp, M.; M u¨ ck-Lichtenfeld, C.; Daasbjerg, K.;
Svith, H. J. Am. Chem. Soc. 2007, 129, 1359–1371.
(13) Shi, L.; Tu, Y.-Q.; Wang, M.; Fan, C.-A.; Zhao, Y.-M.; Xia, W.-J. J. Am.
Chem. Soc. 2005, 127, 10836–10837.
14) (a) Halterman, R. L.; Vollhardt, K. P. C.; Welker, M. E.; Bl a¨ ser, D.; Boese,
R. J. Am. Chem. Soc. 1987, 109, 8105–8107. (b) Broene, R. D.; Buchwald,
S. L. J. Am. Chem. Soc. 1993, 115, 12569–12570.
15) Gans a¨ uer, A.; Barchuk, A.; Fielenbach, D. Synthesis 2004, 2567–2573.
16) (a) Gans a¨ uer, A.; Bluhm, H.; Lauterbach, T. AdV. Synth. Catal. 2001, 343,
785–787. (b) Gans a¨ uer, A.; Bluhm, H.; Rinker, B.; Narayan, S.; Schick,
M.; Lauterbach, T.; Pierobon, M. Chem.—Eur. J. 2003, 9, 531–542.
17) (a) Cesarotti, E.; Kagan, H. B.; Goddard, R.; Kr u¨ ger, C. J. Organomet.
Chem. 1978, 162, 297–309. (b) Gans a¨ uer, A.; Bluhm, H.; Pierobon, M.;
Keller, M. Organometallics 2001, 20, 914–919.
(
(
81%, entry 1). Tosylates (entry 2), esters (entry 3), and chlorides
entry 4) remain unaffected. Silyl groups can also be submitted to
our conditions (entry 5). The reaction of 15 is especially noteworthy.
In titanocene-based methodology, the reduction of benzylic radicals
6
a
is notoriously difficult and requires thiols or selenols (entry 6).
(
Bulky ethers in the close vicinity of a secondary radical center are
tolerated (entry 7).
(
(
To probe the sensitivity of our reaction toward the substitution
pattern of the titanocene catalyst, we investigated the enantiose-
16
17
lective opening of three meso-epoxides by Kagan’s complex 19
Table 3). Alcohols 18, 21, and 23 were isolated with enantiose-
lectivities identical to those of the reactions performed with 5 equiv
(
(
17
of 1,4-cyclohexadiene as radical reductant. Thus, radical genera-
JA801232T
J. AM. CHEM. SOC. 9 VOL. 130, NO. 22, 2008 6917