2
044
A. A.-H. Abdel-Rahman, El S. H. El Ashry
LETTER
and 11 with paraformaldehyde in 0.5 N potassium hy-
droxide solution under microwave irradiation for 3 min-
utes followed by acidification by dilute hydrochloric acid.
Each of the H NMR spectra of 2, 4, 6, 8, 10 and 12
showed a singlet at = 4.11, 3.51, 4.12, 4.15, 3.49 or
(15) Cline, R. E.; Fink, R. M.; Fink, K. J. Am. Chem. Soc. 1959,
81, 2521.
(
(
(
16) Alegria, A. H. Biochim. Biophys. Acta. 1967, 149, 317.
17) Scheit, K. H. Chem. Ber. 1966, 3884.
18) Fourrey, J.-L.; Henry, G.; Jouin, P. J. Chem. Res., Synop.
1
20
1979, 226.
3
.50 ppm corresponding to the CH group, indicated the
2
(19) Fromageot, H. P. M.; Grieffin, B. E.; Reese, C. B.; Sulston,
successful hydroxymethylation.
J. E. Tetrahedron 1967, 23, 2315.
20) Selected Physical Data: 2: White powder; mp >300 °C
(
In conclusion, a succesful hydroxymethylation of pyrimi-
dines and their nucleosides using microwave irradiation
has been achieved. Moreover, various protecting groups
in the nucleosides have not been affected under such con-
ditions, which could allow further chemical modifications
on them. Furthermore, the method saves time, the prod-
ucts were easily isolated, giving high yield, economic and
it is friendly to the environment.
1
(
(
H O); TLC (CHCl –MeOH, 8.5:1.5 v/v): R 0.59. H NMR
2
3
f
DMSO-d , 300 MHz): = 4.11 (s, 2 H, CH ), 7.24 (s, 1 H,
6
2
13
H-6), 10.71 (br s, 1 H, NH), 11.05 (br s, 1 H, NH). C NMR
(DMSO-d , 75.04 MHz): = 55.7 (CH ), 112.6 (C-5), 138.1
6
2
(C-6), 151.3 (C-2), 163.7 (C-4). 4: White powder; mp
300 °C (H O); TLC (CHCl –MeOH, 8:2 v/v): R 0.35. H
1
>
2
3
f
NMR (DMSO-d , 300 MHz): = 3.51 (s, 2 H, CH ), 7.12 (br
6
2
s, 2 H, NH ), 8.15 (s, 1 H, H-6), 11.18 (br s, 1 H, NH). 6:
2
White powder; mp 170–172 °C (H O); TLC (CHCl –
2
3
1
MeOH, 8.5:1.5 v/v): R 0.50. H NMR (DMSO-d , 300
f
6
MHz): = 1.36 (s, 3 H, CH ), 1.57 (s, 3 H, CH ), 3.85 (d, 1
3
3
H, Jgem = 12.1 Hz, H-5 ), 3.97 (d, 1 H, J = 12.1 Hz, H-
General Procedure
a
gem
5 b), 4.12 (s, 1 H, CH ), 4.80 (dd, 1 H, J = 3.0 Hz,
To 2 mL of 0.5 N KOH was added 1 mmol of 1, 3, 5, 7, 9 or 11 and
paraformaldehyde (0.04 g, 1.2 mmol) and each mixture was taken
in a round-bottom flask and irradiated in MW oven (Master KOG
2
3 ,4
J4 ,5 = 2.4 Hz, H-4 ), 4.95 (dd, 1 H, J3 ,4 = 3.0 Hz, J2 ,3 = 6.2
Hz, H-3 ), 4.98 (brs, 1 H, OH), 5.01 (dd, 1 H, J2 ,3 = 6.2 Hz,
J1 ,2 = 2.5 Hz, H-2 ), 5.67 (d, 1 H, J1 ,2 = 2.5 Hz, H-1 ), 7.57
8
40-P, output 1500 W) for 3 min. The reaction mixture was acidi-
(
s, 1 H, H-6), 9.01 (br s, 1 H, NH). 7: White foam; TLC
fied by diluted HCl (pH ~ 6.5) and then reprecipitated from acetone
and water (2:1) to afford pure products of 2, 4, 6, 8, 10 and 12 in
1
(CHCl –MeOH, 9.5:0.5 v/v): R 0.61. H NMR (CHCl , 300
3
f
3
MHz): = 1.08 (s, 9 H, 3 CH ), 1.34 (s, 3 H, CH ), 1.57 (s,
9
3–99% yields.
3
3
3
H, CH ), 3.94 (d, 1 H, J = 12.4 Hz, H-5 ), 3.96 (d, 1 H,
3 gem a
Jgem = 12.4 Hz, H-5 ), 4.26 (dd, 1 H, J = 3.3 Hz,
b
3 ,4
References
J
5
4 ,5 = 2.6 Hz, H-4 ), 4.75 (m, 1 H, H-3 ), 4.82 (m, 1 H, H-2 ),
.44 (d, 1 H, J1 ,2 = 3.1 Hz, H-1 ), 5.97 (d, 1 H, J5,6 = 5.0 Hz,
(
1) Gedye, R. N.; Smith, F. E.; Westaway, K. C. Can. J. Chem.
988, 66, 17.
2) Mingos, D. M. P.; Baghurst, D. R. Chem. Soc. Rev. 1991, 20,
H-5), 7.34–7.41 (m, 5 H, Ar-H), 7.44–7.65 (m, 6 H, Ar-H,
H-6), 9.51 (br s, 1 H, NH). C NMR (CHCl , 75.04 MHz):
1
13
3
(
=
19.3 (Me C), 25.3 (CH ), 26.9 (Me C), 27.2 (CH ), 63.9
3 3 3 3
1.
(
C-5 ), 80.1 (C-3 ), 84.9 (C-2 ), 86.4 (C-4 ), 91.5 (C-1 ),
(
(
3) Abramovitch, R. A. Org. Prep. Proced. Int. 1991, 23, 683.
4) Jahngen, E. G. E.; Lentz, R. R.; Pesheck, P. S.; Sackett, P. H.
J. Org. Chem. 1990, 55, 3406.
1
1
02.4 (Me C), 114.3 (C-5), 127.8, 127.9, 129.9, 130.0,
2
32.2, 132.7, 135.3, 135.5 (Ar-Carbons), 140.6 (C-6), 150.1
(
C-2), 163.3 (C-4). 8: White foam; TLC (CHCl –MeOH, 9:1
3
(
5) Pollington, S. D.; Bond, G.; Moyes, R. B.; Whan, D. A.;
Candlin, J. P.; Jennings, J. R. J. Org. Chem. 1991, 56, 1313.
6) Raner, K. D.; Strauss, C. R. J. Org. Chem. 1992, 57, 6231.
7) Sun, W. C.; Guy, P. M.; Jahngen, J. H.; Rossomando, E. F.;
Jahngen, E. G. E. J. Org. Chem. 1988, 53, 4414.
1
v/v): R 0.58. H NMR (CHCl , 300 MHz): = 1.10 (s, 9 H,
3
Jgem = 12.2 Hz, H-5 ), 3.94 (d, 1 H, J = 12.2 Hz, H-5 b),
4
f
3
CH ), 1.35 (s, 3 H, CH ), 1.60 (s, 3 H, CH ), 3.90 (d, 1 H,
3 3 3
(
(
a
gem
.15 (s, 2 H, CH ), 4.15 (dd, 1 H, J = 3.0 Hz, J4 ,5 = 2.7
2 3 ,4
Hz, H-4 ), 4.77 (dd, 1 H, J3 ,4 = 3.0 Hz, J2 ,3 = 6.3 Hz, H-3 ),
.80 (dd, 1 H, J2 ,3 = 6.3 Hz, J1 ,2 = 3.2 Hz, H-2 ), 5.50 (d, 1
H, J1 ,2 = 3.2 Hz, H-1 ), 7.35–7.44 (m, 5 H, Ar-H), 7.50–7.60
m, 5 H, Ar-H), 8.01 (s, 1 H, H-6), 10.32 (br s, 1 H, NH). 10:
(8) (a) Lewis, D. A.; Ward, T. C.; Summers, J. S.; McGrath, J.
E. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.)
4
1
988, 29, 174. (b) Lewis, D. A.; Summers, J. D.; Ward, T.
C.; McGrath, J. E. J. Polym. Sci. Part A: Polym. Chem. 1992,
0, 1647.
(
Pale yellow foam; TLC (CHCl –MeOH, 9:1 v/v): R 0.45.
3
f
3
1
H NMR (DMSO-d , 300 MHz): = 1.36 (s, 3 H, CH ), 1.63
6
3
(9) Bose, A. K.; Manhas, M. S.; Ghosh, M.; Raju, V. S.; Tabei,
(
(
(
s, 3 H, CH ), 3.49 (s, 2 H, CH ), 4.01 (m, 2 H, H-5 ), 4.31
m, 1 H, H-4 ), 4.39 (m, 1 H, H-3 ), 4.78 (m, 1 H, H-2 ), 5.51
d, 1 H, J1 ,2 = 2.8 Hz, H-1 ), 7.21 (br s, 2 H, NH ), 8.01 (s,
3
2
K.; Urbanczyk-Lipkowska, Z. Heterocycles 1990, 30, 741.
(
10) Berlan, J.; Giboreau, P.; Lefeuvre, S.; Marchand, C.
Tetrahedron Lett. 1991, 32, 2363.
2
1
H, H-6). 12: Yellow foam; TLC (CHCl –MeOH, 9:1 v/v):
3
(11) Adamek, F.; Hajek, M. Tetrahedron Lett. 1992, 33, 2039.
(12) Wyatt, G. R.; Cohen, S. S. Biochem. J. 1953, 55, 774.
(13) Flaks, J. G.; Cohen, S. S. Biochim Biophys. Acta 1957, 25,
1
R 0.65. H NMR (CDCl , 300 MHz): = 1.37 (s, 3 H, CH3),
f
3
1
4
5
.63 (s, 3 H, CH ), 3.50 (s, 2 H, CH ), 3.79 (m, 2 H, H-5 ),
3
2
.33 (m, 1 H, H-4 ), 4.95 (m, 1 H, H-3 ), 5.09 (m, 1 H, H-2 ),
.60 (d, 1 H, J1 ,2 = 2.9 Hz, H-1 ), 7.09–7.25 (m, 8 H, NH2,
667.
(14) Dosmar, M.; Witmer, H. Curr. Microbiol. 1979, 2, 361.
Ar-H), 7.29–7.38 (m, 9 H, Ar-H), 8.06 (s, 1 H, H-6).
Synlett 2002, No. 12, 2043–2044 ISSN 0936-5214 © Thieme Stuttgart · New York