Communication
[18F]16 was 140 GBq/μmol and 232 GBq/μmol, respectively. The
biological evaluation of [18F]14 and [18F]16 is in progress and
will be reported in due course.
11590–11602; c) A. F. Brooks, J. J. Topczewski, N. Ichiishi, M. S. Sanford,
P. J. Scott, Chem. Sci. 2014, 5, 4545–4553.
[6] a) S. Müller, B. Liepold, G. J. Roth, H. J. Bestmann, Synlett 1996, 521–522;
b) S. Ohira, Synth. Commun. 1989, 19, 561–564.
[7] R. Richarz, P. Krapf, F. Zarrad, E. A. Urusova, B. Neumaier, B. D. Zlatopol-
skiy, Org. Biomol. Chem. 2014, 12, 8094–8099.
[8] R. Neelarapu, D. L. Holzle, S. Velaparthi, H. Bai, M. Brunsteiner, S. Y. Blond,
P. A. Petukhov, J. Med. Chem. 2011, 54, 4350–4364.
Conclusions
[9] T. D. Penning, A. Khilevich, B. B. Chen, M. A. Russell, M. L. Boys, Y. Wang,
T. Duffin, V. W. Engleman, M. B. Finn, S. K. Freeman, M. L. Hanneke, J. L.
Keene, J. A. Klover, G. A. Nickols, M. A. Nickols, R. K. Rader, S. L. Settle,
K. E. Shannon, C. N. Steininger, M. M. Westlin, W. F. Westlin, Bioorg. Med.
Chem. Lett. 2006, 16, 3156–3161.
[10] T. Nakamura, M. Sato, H. Kakinuma, N. Miyata, K. Taniguchi, K. Bando, A.
Koda, K. Kameo, J. Med. Chem. 2003, 46, 5416–5427.
[11] C. Selvam, S. M. Jachak, R. Thilagavathi, A. K. Chakraborti, Bioorg. Med.
Chem. Lett. 2005, 15, 1793–1797.
The first application of the Seyferth–Gilbert homologation in
PET chemistry is reported. This approach enables the fast and
simple access to radiofluorinated phenylacetylenes. A wide ap-
plication scope of the novel synthons was demonstrated by the
preparation of various radiolabeled model compounds and PET
tracers using (3+2) cycloadditions and cross-coupling reactions.
[12] a) S. S. Bari, A. Bhalla, Top. Heterocycl. Chem. 2010, 22, 49–99; L. Troisi, C.
Granito, E. Pindinelli, Top. Heterocycl. Chem. 2010, 22, 101–209; B. K.
Banik, I. Banik, F. F. Becker, Top. Heterocycl. Chem. 2010, 22, 349–373; b)
I. Balderas-Renteria, P. Gonzalez-Barranco, A. Garcia, B. K. Banik, G. Rivera,
Curr. Med. Chem. 2012, 19, 4377–4398; c) P. Galletti, D. Giacomini, Curr.
Med. Chem. 2011, 18, 4265–4283; d) A. Kamath, I. Ojima, Tetrahedron
2012, 68, 10640–10664; e) P. D. Mehta, N. P. S. Sengar, A. K. Pathak, Eur.
J. Med. Chem. 2010, 45, 5541–5560.
Acknowledgments
The authors thank J. Zischler for his help in the preparation of
this manuscript.
Keywords: Radiopharmaceuticals · Fluorine-18 · Click
chemistry · Seyferth-Gilbert homologation · Alkynes
[13] K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 16, 4467–
4470.
[14] a) J. D. Way, C. Bergman, F. Wuest, Chem. Commun. 2015, 51, 3838–3841;
b) J. D. Way, M. Wang, I. Hamann, M. Wuest, F. Wuest, Nucl. Med. Biol.
2014, 41, 660–669; c) F. R. Wüst, T. Kniess, J. Labelled Compd. Radiopharm.
2003, 46, 699–713.
[15] B. Liang, M. Dai, J. Chen, Z. Yang, J. Org. Chem. 2005, 70, 391–393.
[16] a) R. L. Funk, K. P. C. Vollhardt, J. Am. Chem. Soc. 1980, 102, 5253–5261;
b) V. Gevorgyan, U. Radhakrishnan, A. Takeda, M. Rubina, M. Rubin, Y.
Yamamoto, J. Org. Chem. 2001, 66, 2835–2841; c) A. L. McIver, A. Deiters,
Org. Lett. 2010, 12, 1288–1291.
[17] a) S. Kotha, E. Brahmachary, K. Lahiri, Eur. J. Org. Chem. 2005, 4741–4767;
b) H. Singer, G. Wilkinson, J. Chem. Soc. A 1968, 849–853; c) Y. Yoshihiko,
Curr. Org. Chem. 2005, 9, 503–519.
[18] a) C. G. Crosby, R. N. DuBois, Expert Opin. Emerging Drugs 2003, 8, 1–7;
b) M. J. Uddin, B. C. Crews, K. Ghebreselasie, I. Huda, P. J. Kingsley, M. S.
Ansari, M. N. Tantawy, J. Reese, L. J. Marnett, Cancer Prev. Res. 2011, 4,
1536–1545.
[1] P. W. Miller, N. J. Long, R. Vilar, A. D. Gee, Angew. Chem. Int. Ed. 2008, 47,
8998–9033; Angew. Chem. 2008, 120, 9136–9172.
[2] a) M. Glaser, E. Årstad, Bioconjugate Chem. 2007, 18, 989–993; b) H. C.
Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004–
2021; Angew. Chem. 2001, 113, 2056–2075; c) J. Marik, J. L. Sutcliffe,
Tetrahedron Lett. 2006, 47, 6681–6684; d) M. Pretze, D. Pietzsch, C. Ma-
mat, Molecules 2013, 18, 8618–8665; e) B. D. Zlatopolskiy, R. Kandler, D.
Kobus, F. M. Mottaghy, B. Neumaier, Chem. Commun. 2012, 48, 7134–
7136; f) B. D. Zlatopolskiy, R. Kandler, F. M. Mottaghy, B. Neumaier, Appl.
Radiat. Isot. 2012, 70, 184–192; g) B. D. Zlatopolskiy, P. Krapf, R. Richarz,
H. Frauendorf, F. M. Mottaghy, B. Neumaier, Chem. Eur. J. 2014, 20, 4697–
4703.
[3] a) P. Daumar, C. A. Wanger-Baumann, N. Pillarsetty, L. Fabrizio, S. D. Carlin,
O. A. Andreev, Y. K. Reshetnyak, J. S. Lewis, Bioconjugate Chem. 2012, 23,
1557–1566; b) J. A. H. Inkster, M. J. Adam, T. Storr, T. J. Ruth, Nucleosides
Nucleotides Nucleic Acids 2009, 28, 1131–1143; c) Y. Li, Z. Liu, C. W. Har-
wig, M. Pourghiasian, J. Lau, K.-S. Lin, P. Schaffer, F. Benard, D. M. Perrin,
Am. J. Nucl. Med. Mol. Imaging 2013, 3, 57–70; d) W. Liu, X. Huang, M.-J.
Cheng, R. J. Nielsen, W. A. Goddard, J. T. Groves, Science 2012, 337, 1322–
1325; e) T. Ramenda, R. Bergmann, F. Wuest, Lett. Drug Des. Discovery
2007, 4, 279–285; f) D. Thonon, C. Kech, J. Paris, C. Lemaire, A. Luxen,
Bioconjugate Chem. 2009, 20, 817–823.
[19] S. D. Sweat, A. Pacelli, G. P. Murphy, D. G. Bostwick, Urology 1998, 52,
637–640.
[20] M. Dietlein, C. Kobe, G. Kuhnert, S. Stockter, T. Fischer, K. Schomäcker, M.
Schmidt, F. Dietlein, B. Zlatopolskiy, P. Krapf, R. Richarz, S. Neubauer, A.
Drzezga, B. Neumaier, Mol. Imaging Biol. 2015, 17, 575–584.
[21] A. G. Wernicke, S. Varma, E. A. Greenwood, P. J. Christos, K. S. C. Chao, H.
Liu, N. H. Bander, S. J. Shin, APMIS 2014, 122, 482–489.
[4] B. D. Zlatopolskiy, J. Zischler, P. Krapf, F. Zarrad, E. A. Urusova, E. Kordys,
H. Endepols, B. Neumaier, Chem. Eur. J. 2015, 21, 5972–5979.
[22] S. S. Chang, D. S. O'Keefe, D. J. Bacich, V. E. Reuter, W. D. W. Heston, P. B.
Gaudin, Clin. Cancer Res. 1999, 5, 2674–2681.
[5] a) C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2015, 54, 3216–3221;
Angew. Chem. 2015, 127, 3261–3267; b) M. Tredwell, V. Gouverneur,
Angew. Chem. Int. Ed. 2012, 51, 11426–11437; Angew. Chem. 2012, 124,
Received: October 30, 2015
Published Online: December 15, 2015
Eur. J. Org. Chem. 2016, 430–434
433
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim