H. Li et al. / Journal of Molecular Catalysis A: Chemical 244 (2006) 33–40
39
Scientist Foundation of Hubei (2003ABB013), Excellent Young
Teachers Program of Ministry of Education of China, the State
Ethnic Affairs Commission, PR China, and Returnee Startup
Scientific Research Foundation of Ministry of Education of
China.
References
[1] C. Knottenbelt, Catal. Today 71 (2002) 437.
[2] H. Schulz, Appl. Catal. A 186 (1999) 3.
[3] E. Iglesia, Appl. Catal. A 161 (1997) 59.
[4] P.J. van Berge, R.C. Everson, Stud. Surf. Sci. Catal. 107 (1997) 207.
[5] G.P. van der Laan, A.A.C.M. Beenackers, Catal. Rev. Sci. Eng. 41 (1999)
255.
[6] R. Zennaro, M. Tagliabue, C.H. Bartholomew, Catal. Today 58 (2000)
309.
[7] R.C. Reuel, C.H. Bartholomew, J. Catal. 85 (1984) 63.
[8] S. Sun, N. Tsubaki, K. Fujimoto, Appl. Catal. A 202 (2000) 121.
[9] L.B. Backman, A. Rautiainen, A.O.I. Krause, M. Lindblad, Catal. Today
43 (1998) 11.
Fig. 9. Influence of Co loading on the olefin to paraffin ratio in product of
catalysts. (There had no products gathered for low CO conversion of 5Co/M.)
[10] S. Bessell, Appl. Catal. A 126 (1995) 235.
[11] S. Bessell, Appl. Catal. A 96 (1993) 253.
[12] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature
359 (1992) 710.
[13] S. Inagaki, Y. Fukushima, K. Kuroda, J. Chem. Soc., Chem. Commun.
(1993) 680.
[14] E. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka,
G.D. Stucky, Science 279 (1998) 548.
[15] H.H. Nijs, P.A. Jacobs, J. Catal. 65 (1980) 328.
[16] A. Corma, Chem. Rev. 97 (1997) 2373.
olefin content with chain length could be caused by the decrease
in the diffusivities of longer chain hydrocarbons. The increase in
their residence time in the catalyst pores [3], may be caused by
␣-olefin readsorption [42], or the higher solubility of the higher
␣-olefin in the liquid phase [5], leading to their increased con-
version to paraffin. So, in this study, the higher C5+ selectivity
observed over 10Co/M and 15Co/M can be attributed to the fol-
lowing two reasons: (i) the presence of larger cobalt particles
and (ii) the readsorption of the ␣-olefins.
[17] J. Panpranot, J.G. Goodwin Jr., A. Sayari, Catal. Today 77 (2002) 269.
[18] D. Yin, W. Li, W. Yang, H. Xiang, Y. Sun, B. Zhong, S. Peng, Micro-
porous Mesoporous Mater. 47 (2001) 15.
[19] Y. Wang, M. Noguchi, Y. Takahashi, Y. Ohtsuka, Catal. Today 68 (2001)
3.
[20] A.Y. Khodakov, A. Griboval-Constant, R. Bechara, V.L. Zholobenko, J.
Catal. 206 (2002) 230.
[21] A. Griboval-Constant, A.Y. Khodakov, R. Bechara, V.L. Zholobenko,
Stud. Surf. Sci. Catal. 144 (2002) 609.
[22] A.Y. Khodakov, R. Bechara, A. Griboval-Constant, Stud. Surf. Sci. Catal.
142 (2002) 1133.
The chain growth probability during Fischer–Tropsch syn-
thesis on supported cobalt catalysts generally increases with the
size of the reduced Co particles [7,23] up to a certain parti-
cle size above which it remains constant [42]. Khodakov et al.
[27] also thought that for a given catalytic support hydrocarbon
selectivities are almost constant in the wide range of cobalt sur-
face densities. In this study, the C5+ selectivities followed these
results.
[23] A.Y. Khodakov, A. Griboval-Constant, R. Bechara, F. Villain, J. Phys.
Chem. B 105 (2001) 9805.
[24] A.Y. Khodakov, J. Lynch, D. Bazin, B. Rebours, N. Zanier, B. Moisson,
P. Chaumette, J. Catal. 168 (1997) 16.
[25] J. Li, G. Jacobs, Y. Zhang, T.K. Das, B.H. Davis, Appl. Catal. A 223
(2002) 195.
4. Conclusions
The reducibility and FT catalytic behavior of cobalt species
supported by MCM-48 can be affected by Co loading. Lower FT
activity and higher methane selectivity observed on low cobalt
loading catalyst are principally attributed to the lower reducibil-
ity of small cobalt particles. With increasing Co loading the
cobalt crystallite size increases and leads to higher reducibility
and C5+ selectivies. But when Co loading exceed 10 wt.%, the
CO conversion and hydrocarbons selectivies seemed to affected
slightly by Co loading. The extent of overall reduction may thus
be one of the key factors for determining not only CO conversion
but chain growth probability.
[26] G. Jacobs, T.K. Das, Y. Zhang, J. Li, G. Racoillet, B.H. Davis, Appl.
Catal. A: Gen. 233 (2002) 263.
[27] A.Y. Khodakov, R. Bechara, A. Griboval-Constant, Appl. Catal. A: Gen.
254 (2003) 273.
[28] A. Mart´ınez, C. Lo´pez, F. Ma´rquez, I. D´ıaz, J. Catal. 220 (2003)
486.
[29] S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D.
Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B.
Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114 (1992) 10834.
[30] M.W. Anderson, Zeolites 19 (1997) 220.
[31] K. Schumacher, M. Gruun, K.K. Unger, Microporous Mesoporous Mater.
27 (1999) 201.
[32] S. Wang, D. Wu, Y. Sun, B. Zhong, Acta Phys.-Chim. Sin. 17 (2001)
659.
[33] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951)
373.
Acknowledgments
[34] B.D. Cullity, Elements of X-Ray Diffraction, Addision–Wesley, London,
1978.
[35] R.D. Jones, C.H. Bartholomew, Appl. Catal. 39 (1988) 77.
The work was supported by the National Natural Science
Foundation of China (20473114, 20590360), Talented Young