X. Li et al. / Inorganica Chimica Acta 360 (2007) 241–245
245
Based on the above experimental results and discus-
References
sion, although the exact formation mechanism is not
clear, a possible process of silica helices can be proposed.
The critical micelle concentration Cmin of CTAB is
9.2 · 10À4 mol dmÀ3 [12], which is lower than the CTAB
concentration used in the reaction system. Thus, the
CTAB tend to self-assemble and form some aggregations.
[1] (a) R. Tenne, Angew. Chem. Int. Edit. 42 (2003) 5124;
(b) Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F.
Kim, H. Yan, Adv. Mater. 15 (2003) 353;
(c) J. Hu, T.W. Odom, C. Lieber, Acc. Chem. Res. 32 (1999) 435;
(d) Z.L. Wang, Adv. Mater. 15 (2003) 432.
[2] H. Zhang, C. Wang, E.C. Buck, L. Wang, Nano Lett. 3 (2003) 577.
[3] V. Bajpai, L. Dai, T. Ohashi, J. Am. Chem. Soc. 126 (2004) 5070.
[4] (a) X. Kong, Z.L. Wang, Appl. Phys. Lett. 84 (2004) 975;
(b) J. Jung, H. Kobayashi, K. van Bommel, S. Shinkai, T. Shimizu,
Chem. Mater. 14 (2002) 1445;
(c) S. Kobayashi, N. Hamasaki, M. Suzuki, M. Kimura, H. Shirai,
K. Hanabusa, J. Am. Chem. Soc. 124 (2002) 6550.
[5] (a) J.H. Jung, H. Kobayashi, M. Masuda, T. Shimizu, S. Shinkai, J.
Am. Chem. Soc. 123 (2001) 8785;
When HNO3 and HBr are used, NO and BrÀ anions
À
3
have greater affinity to the ammonium ions and they
can combine with micelle of CTAB to promote the forma-
tion of the complex surfactant structure. The complex
surfactant structure may act as the templates of helical
silica. Furthermore, as the hydrolysis of TEOS is compli-
cated, the reciprocity of CTAB and TEOS may cause the
formation of silica with helical structure. Further research
is needed to investigate the formation mechanisms in
detail.
(b) S. Yang, W.J. Kim, Adv. Mater. 13 (2001) 1191;
(c) S. Yang, I. Sokolov, N. Coombs, C.T. Kresge, G.A. Ozin, Adv.
Mater. 11 (1999) 142;
(d) Y. Yang, M. Suzuk, S. Owa, H. Shirai, K. Hanabusa, Chem.
Comm. (2005) 4462.
[6] (a) J.H. Jung, K. Yoshida, T. Shimizu, Langmuir 18 (2002) 8724;
(b) Y. Yang, M. Suzuki, H. Fukui, H. Shirai, K. Hanabusa, Chem.
Mater. 18 (2006) 1324;
4. Conclusion
(c) K. Sugiyasu, S. Tamaru, M. Takeuchi, D. Berthier, I. Huc, R.
Oda, S. Shinkai, Chem. Commun. (2002) 1212;
(d) J.H. Jung, S. Shinkai, T. Shimizu, Chem. Mater. 15 (2003) 2141.
[7] (a) Z. Zhan, J. Wang, J. Yuan, H. Gong, Y. Liu, M. Liu, Langmuir
19 (2003) 9440;
(b) X. Fu, Y. Wang, L. Huang, Y. Sha, L. Gui, L. Lai, Y. Tang,
Adv. Mater. 15 (2003) 902.
[8] T. Terada, S. Yamabi, H. Imai, J. Cryst. Growth 253 (2003) 435.
[9] I. Sato, K. Kadowaki, H. Urabe, J.H. Jung, Y. Ono, S. Shinkai, K.
Soai, Tetrahedron Lett. 44 (2003) 721.
Amorphous silica helices have been synthesized with
the help of CTAB in acidic aqueous solutions. The for-
mation of silica with helical structure may come from
the reciprocity of CTAB and TEOS. The use of CTAB
and HNO3 or HBr is essential to the formation of helical
structure. Growth time and temperature and molar ratio
of CTAB and TEOS are also important. The method
demonstrated here could be extended to the synthesis of
other nanomaterials.
[10] Z.L. Wang, Nanowires and Nanobelts – Materials Properties and
Devices, Tsinghua Univeristy Publication, 2004, p191–205.
[11] (a) R.B. Dorshow, C.A. Bunton, D.F. Nicoli, J. Phys. Chem. 87
(1983) 1409;
Acknowledgement
(b) H. Kawamura, M. Manabe, Y. Miyamoto, Y. Fujita, S.
Tokunaga, J. Phys. Chem. 93 (1989) 5540.
[12] G. Zhao, B. Zhu, Principles of Surfactant Action, Chinese light
industry press, Beijing, p. 309 (in Chinese).
This work was supported by the NSF (Project
90406018), MOST (Project 2001CB610501) and MOE of
China.