C O M M U N I C A T I O N S
proceeded with high conversion (>95%) at room temperature in
4 h to yield (2b-4a)20 (Table 1). This type of product is viewed as
a precursor to polymers with a variety of side chains because of
the electrophilicity of phenyl esters. Next, we investigated the effect
of substituents on the cyclohexene. Neither 1-methylcyclohexene
nor 1-methoxy-cyclohexene generated an AROMP polymer with
2a. We inferred that increased substitution at the alkene prevents
addition. Indeed, 4-(methoxymethyl)-cyclohexene, 4b, underwent
AROMP with 2a to generate the corresponding alternating polymer
(2a-4b)20, with 95% conversion in 4 h (Table 1). The regiochemistry
of metathesis could not be determined in the polymerization of 4b
and is most likely random. 4-Substituted cyclohexenes are attractive
monomers for AROMP because they are readily available through
Diels-Alder chemistry.
1
Figure 1. Alkene region of H NMR spectra (CD2Cl2) of polymers (2a-
In conclusion, we have demonstrated that synthetically accessible,
select monomer pairs undergo AROMP with the reactive precatalyst
1 to form (AB)n heteropolymers with an alternating backbone and
alternating functionality. The regiocontrol of heteropolymer forma-
tion derives from the inability of the cyclobutene ester and
cyclohexene monomers to undergo homopolymerization in com-
bination with the favorable kinetics of cross polymerization.
4a)20 and (2a-4a-D10)20. Proton integrations and assignments are indicated
above the peaks.
Acknowledgment. We acknowledge NIH grants R01HD38519,
S10RR021008 (N.S.S.) and R01GM74776 (K.A.P.), an NYSTAR
grant (FDP C040076, N.S.S.), and NSF Grant CHE0131146
(NMR). We thank Dr. F. Picart for his assistance with NMR
spectroscopy.
Supporting Information Available: Experimental procedures and
characterization data. This information is available free of charge via
Figure 2. Possible substructures generated in the copolymerization of 2a
with cyclohexene-D10. Red carbons are perdeuterated. Blue carbons bear
hydrogen.
References
(1) (a) Klok, H. A.; Lecommandoux, S. AdV. Mater. 2001, 13, 1217–1229.
(b) Grayson, S. M.; Frechet, J. M. J. Chem. ReV. 2001, 101, 3819–3867.
(c) Cho, I. Prog. Polym. Sci. 2000, 25, 1043–1087.
(2) (a) Murphy, J. J.; Furusho, H.; Paton, R. M.; Nomura, K. Chem. Eur. J.
2007, 13, 8985–8997. (b) Kumar, R.; Chen, M. H.; Parmar, V. S.;
Samuelson, L. A.; Kumar, J.; Nicolosi, R.; Yoganathan, S.; Watterson, A. C.
J. Am. Chem. Soc. 2004, 126, 10640–10644. (c) Bronich, T. K.; Keifer,
P. A.; Shlyakhtenko, L. S.; Kabanov, A. V. J. Am. Chem. Soc. 2005, 127,
8236–8237.
(3) Furuta, P. T.; Deng, L.; Garon, S.; Thompson, M. E.; Frechet, J. M. J.
J. Am. Chem. Soc. 2004, 126, 15388–15389.
(4) (a) Braunecker, W. A.; Matyjaszewski, K. Prog. Polym. Sci. 2007, 32, 93–
146. (b) Maki, Y.; Mori, H.; Endo, T. Macromolecules 2008, 41, 8397–
8404, and references therein.
(5) Hamilton, J. G.; Ivin, K. J.; Rooney, J. J.; Waring, L. C. J. Chem. Soc.,
Chem. Commun. 1983, 4, 159–61.
(6) Choi, T. L.; Rutenberg, I. M.; Grubbs, R. H. Angew. Chem., Int. Ed. 2002,
41, 3839–3841.
with the absence of a BB repeat in the polymer (Figure 2B).
Moreover, the intensity of the signal at δ ) 6.8 ppm in the spectrum
of (2a-4a-D10)20 was reduced to 9% of its relative intensity in the
spectrum of the undeuterated polymer ((2a-4a)20), showing that only
9% of the dyads are of type AA (Figure 2B). We observed that the
fraction of AA dyad was constant regardless of the original A:B
feed ratio in the AROMP reaction. Therefore, the polymer chain
grows with alternation by a mechanism that does not depend on
monomer concentration.
The concentration-independent population of the AA dyad and
the absence of BB dyad suggested that the AA dyads result from
intramolecular backbiting of the enoic ruthenium carbene 5 on the
disubstituted alkene.13 Partial separation of the components of the
polymer by flash chromatography gave a fraction that contained
the AA substructure (as indicated by a clean triplet at 6.8 ppm)
but not the phenyl end group (Figure S5). Isolation of this material
supports a model in which the AA repeat is generated at the
backbiting junction during the cyclization step. We found that the
Mw’s were smaller than expected and the polydispersities (PDIs)
were large (>2) (Supporting Information and Figure S6). Polymer
(2-4a)200 had a bimodal molecular weight distribution in which the
higher molecular weight peak corresponded to the desired polymer
with a PDI of 1.2 (Figure S7). These data are consistent with
backbiting to form a cyclic polymer during chain growth.
To explore the breadth of applications of AROMP products, we
examined the effects of varying the structures of the monomers.
We found, for example, that AROMP of 4a and phenyl ester 2b
(7) Ilker, M. F.; Coughlin, E. B. Macromolecules 2002, 35, 54–58.
(8) (a) Bornand, M.; Torker, S.; Chen, P. Organometallics 2007, 26, 3585–
3596 and Bornand, M.; Chen, P. Angew. Chem., Int. Ed. 2005, 44, 7909–
7911. (b) Vehlow, K.; Wang, D.; Buchmeiser, M. R.; Blechert, S. Angew.
Chem., Int. Ed. 2008, 47, 2615–2618. (c) Amir-Ebrahimi, V.; Rooney, J. J.
J. Mol. Catal. A 2004, 208, 115–121 and Al Samak, B.; Carvill, A. G.;
Hamilton, J. G.; Rooney, J. J.; Thompson, J. M. Chem. Commun. 1997,
2057–2058.
(9) Love, J. A.; Morgan, J. P.; Trnka, T. M.; Grubbs, R. H. Angew. Chem.,
Int. Ed. 2002, 41, 4035–4037.
(10) Lee, J.; Parker, K. A.; Sampson, N. S. J. Am. Chem. Soc. 2006, 128, 4578–
4579.
(11) Ivin, K. J.; Mol, J. C. Olefin metathesis and metathesis polymerization;
Academic Press: London, 1997.
(12) (a) Ulman, M.; Belderrain, T. R.; Grubbs, R. H. Tetrahedron Lett. 2000,
41, 4689–4693. (b) Choi, T. L.; Lee, C. W.; Chatterjee, A. K.; Grubbs,
R. H. J. Am. Chem. Soc. 2001, 123, 10417–10418. (c) Fomine, S.;
Tlenkopatchev, M. A. Organometallics 2007, 26, 4491–4497.
(13) Thorn-Csanyi, E.; Ruhland, K. Macromol. Chem. Phys. 1999, 200, 1662–
1671. (b) Kamau, S. D.; Hodge, P.; Hall, A. J.; Dad, S.; Ben-Haida, A.
Polymer 2007, 48, 6808–6822.
JA809661K
9
J. AM. CHEM. SOC. VOL. 131, NO. 10, 2009 3445