ChemCatChem
10.1002/cctc.201801782
FULL PAPER
[
1] a) J. H. Clark, F. E. I. Deswarte, in Introduction to Chemicals
from Biomass (Eds.: J. H. Clark, F. E. I. Deswarte), John
Wiley & Sons, Ltd. 2008, pp. 1-20; b) D. B. Turley, in
Introduction to Chemicals from Biomass (Eds.: J. H. Clark, F.
E. I. Deswarte), John Wiley & Sons, Ltd. 2008, pp. 21-46.
Q. Bond, J. C. Serrano-Ruiz, J. A. Dumesic, Green Chem.
2010, 12, 992-999; c) S. Lomate, A. Sultana, T. Fujitani,
Catal. Lett. 2018, 148, 348-358.
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
[14] a) A. S. Amarasekara, T. B. Singh, E. Larkin, M. A. Hasan,
H.-J. Fan, Ind. Crops Prod. 2015, 65, 546-549; b) G. Liang,
A. Wang, X. Zhao, N. Lei, T. Zhang, Green Chem. 2016, 18,
3430-3438.
[15] Y. Z. Qin, M. H. Zong, W. Y. Lou, N. Li, ACS Sustain. Chem.
Eng. 2016, 4, 4050-4054.
[16] K. M. Doll, S. Z. Erhan, Green Chem. 2008, 10, 712-717.
[17] a) W. Wang, N. Li, S. Li, G. Li, F. Chen, X. Sheng, A. Wang,
X. Wang, Y. Cong, T. Zhang, Green Chem. 2016, 18, 1218-
1223; b) J. Xin, S. Zhang, D. Yan, O. Ayodele, X. Lu, J. Wang,
Green Chem. 2014, 16, 3589-3595.
[18] a) Y.-B. Huang, J.-J. Dai, X.-J. Deng, Y.-C. Qu, Q.-X. Guo,
Y. Fu, ChemSusChem 2011, 4, 1578-1581; b) A. Ledoux, L.
Sandjong Kuigwa, E. Framery, B. Andrioletti, Green Chem.
2015, 17, 3251-3254.
[2] a) F. H. Isikgor, C. R. Becer, Polym. Chem. 2015, 6, 4497-
4559; b) H. L. Wang, Y. Q. Pu, A. Ragauskas, B. Yang,
Bioresour. Technol. 2019, 271, 449-461.
[
3] a) P. Gallezot, Chem. Soc. Rev. 2012, 41, 1538-1558; b) G.
Fiorentino, M. Ripa, S. Ulgiati, Biofuels, Bioprod. Biorefin.
2017, 11, 195-214.
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
[
4] a) A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107,
2411-2502; b) V. D. M. patel, B. Husing, L. Overbeek, F.
Terragni, E. Recchia, in Medium and Long-term
Opportunities and Risks of the Biotechnology production of
Bulk Chemicals from Renewable Resources-The Potential of
White Biotechnology, The BREW Project report, European
Commissions Growth Programme, 2006; c) S. Van de Vyver,
J. Geboers, P. A. Jacobs, B. F. Sels, ChemCatChem 2011,
[19] a) F. Liguori, C. Moreno-Marrodan, P. Barbaro, ACS Catal.
2015, 5, 1882-1894; b) S. Gundekari, K. Srinivasan, Appl.
Catal. A: Gen. 2019, 569, 117-125.
[20] D. M. Alonso, S. G. Wettstein, J. A. Dumesic, Green Chem.
2013, 15, 584-595.
3, 82-94; d) M. Rose, R. Palkovits, Macromol. rapid commun.
2011, 32, 1299-1311; e) D. M. Alonso, J. Q. Bond, J. A.
Dumesic, Green Chem. 2010, 12, 1493-1513; f) S. Li, W.
Deng, S. Wang, P. Wang, D. An, Y. Li, Q. Zhang, Y. Wang,
ChemSusChem 2018, 11, 1995-2028; g) Z. Sun, B. Fridrich,
A. de Santi, S. Elangovan, K. Barta, Chem. Rev. 2018, 118,
[21] a) B. M. Trost, J. R. Corte, Angew. Chem. Int. Ed. 1999, 38,
3664-3666; b) B. M. Trost, J. R. Corte, M. S. Gudiksen,
Angew. Chem. Int. Ed. 1999, 38, 3662-3664; c) W. C. C.
Bernhart, P. Gautier, Derivatives of γ-butyrolactone with an
anti-arrythmic activity and compositions, US Patent
4,542,134, 1985; d) H.-F. Chan, The preparation of
substituted gamma butyrolactones useful as intermeadiates
for making fungicidal imidazoles and triazoles, European
Patent 0162265 B1, 1990.
[22] a) C. Stone, Use of gamma substituted gamma-
butyrolactone to increase levels of their corresponding
substituted gamma-hydroxybutyrate derivatives in humans,
US Patent 0132846 A1, 2002; b) T. Dohi, N. Takenaga, A.
Goto, A. Maruyama, Y. Kita, Org. Lett. 2007, 9, 3129-3132;
c) J. D. Lambert, J. E. Rice, J. Hong, Z. Hou, C. S. Yang,
Bioorg. Med. Chem. Lett. 2005, 15, 873-876; d) A. Albrecht,
J. F. Koszuk, J. Modranka, M. Różalski, U. Krajewska, A.
Janecka, K. Studzian, T. Janecki, Bioorg. Med. Chem. 2008,
16, 4872-4882; e) C.-C. Tzeng, K.-H. Lee, T.-C. Wang, C.-H.
Han, Y.-L. Chen, Pharm. Res. 2000, 17, 715-719.
[23] a) J. Cejka, A. Corma, S. Zones, in Handbook of Zeolites and
Catalysis: Synthesis, Reactions and Applications, Wiley‐
VCH Verlag GmbH & Co. KGaA, 2010; b) R. A. Sheldon, I.
Arends and U. Hanefeld, in Handbook of Green chemistry
and Catalysis, Wiley‐VCH Verlag GmbH & Co. KGaA, 2007.
[24] a) T. P. Vispute, H. Zhang, A. Sanna, R. Xiao, G. W. Huber,
Science 2010, 330, 1222-1227; b) E. I. Gürbüz, J. M. R. Gallo,
D. M. Alonso, S. G. Wettstein, W. Y. Lim, J. A. Dumesic,
Angew. Chem. Int. Ed. 2013, 52, 1270-1274; c) Q. Guo, F.
Fan, E. A. Pidko, W. N. P. van der Graaff, Z. Feng, C. Li, E.
J. M. Hensen, ChemSusChem 2013, 6, 1352-1356; d) E.
Taarning, C. M. Osmundsen, X. Yang, B. Voss, S. I.
Andersen, C. H. Christensen, Energy Environ. Sci. 2011, 4,
793-804; e) S. Saravanamurugan, M. Paniagua, J. A. Melero,
A. Riisager, J. Am. Chem. Soc. 2013, 135, 5246-5249; f) W.
Luo, U. Deka, A. M. Beale, E. R. H. van Eck, P. C. A.
Bruijnincx, B. M. Weckhuysen, J. Catal. 2013, 301, 175-186;
g) P. Bhanja, A. Bhaumik, Fuel 2016, 185, 432-441.
[25] J. C. Jansen, E. J. Creyghton, S. L. Njo, H. van Koningsveld,
H. van Bekkum, Catal. Today 1997, 38, 205-212.
614-678; h) L. T. Mika, E. Csefalvay, A. Nemeth, Chem. Rev.
2018, 118, 505-613.
[5] a) P. N. R. Vennestrøm, C. M. Osmundsen, C. H.
Christensen, E. Taarning, Angew. Chem. Int. Ed. 2011, 50,
10502-10509; b) M. Pelckmans, T. Renders, S. Van de Vyver,
B. F. Sels, Green Chem. 2017, 19, 5303-5331; c) C. G. S.
Lima, J. L. Monteiro, T. de Melo Lima, M. Weber Paixao, A.
G. Correa, ChemSusChem 2018, 11, 25-47; d) K. Gupta, R.
K. Rai, S. K. Singh, ChemCatChem 2018, 10, 2326-2349.
[6] a) L. Yan, Q. Yao, Y. Fu, Green Chem. 2017, 19, 5527-5547;
b) F. D. Pileidis, M. M. Titirici, ChemSusChem 2016, 9, 562-
582.
[
7] a) D. W. Rackemann, W. O. S. Doherty, Biofuels, Bioprod.
Biorefin. 2011, 5, 198-214; b) A. Szabolcs, M. Molnar, G.
Dibo, L. T. Mika, Green Chem. 2013, 15, 439-445; c) J. J.
Bozell, L. Moens, D. C. Elliott, Y. Wang, G. G.
Neuenscwander, S. W. Fitzpatrick, R. J. Bilski, J. L. Jarnefeld,
Resour. Conserv. Recycl. 2000, 28, 227-239; d) S. M. Kang,
J. X. Fu, G. Zhang, Renew. Sustain. Energy Rev. 2018, 94,
340-362.
[
[
8] B. V. Timokhin, V. A. Baransky, G. D. Eliseeva, Russ. Chem.
Revi. 1999, 68, 73-84.
9] a) J. J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539-
554; b) A. Aden, J. Bozell, J. Holladay, J. White, A. Manheim,
in Top Value Added Chemicals from Biomass Volume I,
Results of Screening for Potential Candidates from Sugars
and Synthesis Gas, U.S. Department of Energy (DOE)
Report, 2004.
[
10] a) S. Selifonov, Glycerol levulinate ketals and their use in the
manufacture of polyurethanes, polyurethanes formed
therefrom, US Patent 0196947A1, 2012; b) A. S.
Amarasekara, S. A. Hawkins, Eur. Polym. J. 2011, 47, 2451-
2457.
11] Y. Guo, K. Li, J. H. Clark, Green Chem. 2007, 9, 839-841.
12] a) A. Démolis, N. Essayem, F. Rataboul, ACS Sustainable
Chem. Eng. 2014, 2, 1338-1352; b) S. Saravanamurugan, A.
Riisager, ChemCatChem 2013, 5, 1754-1757; c) Q. J. Luan,
L. J. Liu, S. W. Gong, J. Lu, X. Wang, D. M. Lv, Process Saf.
Environ. Prot. 2018, 117, 341-349.
[
[
[26] S. Gundekari, K. Srinivasan, Catal. Lett. 2018 (DOI:
10.1007/s10562-018-2618-7).
[13] a) J. Q. Bond, D. M. Alonso, D. Wang, R. M. West, J. A.
Dumesic, Science 2010, 327, 1110-1114; b) D. M. Alonso, J.
This article is protected by copyright. All rights reserved.