Macromolecules
Article
could endow Pd0 with its high activity in the Suzuki cross-
coupling reactions. The Pd0 nanoparticles inside the networks
are very small, which can be another reason for the high activity
of the catalyst.
2131. (b) Martin, C. F.; Stockel, E.; Clowes, R.; Adams, D. J.; Cooper,
̈
A. I.; Pis, J. J.; Rubiera, F.; Pevida, C. J. Mater. Chem. 2011, 21, 5475.
(c) Moon, S. Y.; Bae, J. S.; Jeon, E.; Park, J. W. Angew. Chem., Int. Ed.
2010, 49, 9504.
(5) (a) Spitler, E. L.; Dichtel, W. R. Nat. Chem. 2010, 2, 672.
(b) Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.;
Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R.
Science 2011, 332, 228.
4. CONCLUSIONS
A quaternary phosphonium and tertiary phosphorus function-
alized microporous polymer was prepared by Yamamoto
coupling reaction. The content ratio of quaternary phospho-
nium to phosphine atoms was close to 3:2, determined by 31P
solid-state NMR. It was also stable toward water, base (1 M
NaOH, 24 h), and acid (1 M HCl, 24 h). The polymeric
networks display high surface area, and the surface area can be
tuned by changing the counteranions. Their apparent BET
specific surface areas increased from 650 to 750 and 980 m2 g−1
respectively, as the Br− anion was changed to Cl− or F− by ionic
exchange, due to the decreasing ionic radius of Cl− and F−. It
displays high intrinsic catalytic activity for the reaction between
epoxide and CO2. An 98% yield of the reaction between
epoxide and CO2 was obtained at 140 °C and 1 atom for 20 h.
Pd nanoparticles supported on PP were also prepared, which
are uniformly dispersed in the polymeric networks and exhibit
high catalytic activity for Suzuki reactions. The coupling
reactions between aryl chlorides and phenylboronic acid gave
the desired product in >95% conversion in the presence of PP-
Pd. More importantly, a yield of 87% was obtained when
fluorobenzene was used as reactant. In general, catalytic C−C
cross-coupling reactions of fluoroderivatives are rare.
(6) Dawson, R.; Adams, D. J.; Cooper, A. I. Chem. Sci. 2011, 2, 1173.
(7) (a) Katsoulidis, A. P.; Kanatzidis, M. G. Chem. Mater. 2011, 23,
1818. (b) Jiang, J.; Trewin, A.; Su, F.; Wood, C. D.; Niu, H.; Jones, J.
T. A.; Khimyak, Y. Z.; Cooper, A. I. Macromolecules 2009, 42, 2658.
(c) Choi, J. H.; Choi, K. M.; Jeon, H. J.; Choi, Y. J.; Lee, Y.; Kang, J. K.
Macromolecules 2010, 43, 5508. (d) Jiang, J.; bourn, A. L.; Clowes, R.;
Khimyak, Y. Z.; Bacsa, J. Macromolecules 2010, 43, 7577.
(8) (a) Xie, Z.; Wang, C.; deKrat, K. E.; Lin, W. J. Am. Chem. Soc.
2011, 133, 2056. (b) Chen, L.; Yang, Y.; Jiang, D. J. Am. Chem. Soc.
2010, 132, 9138. (c) Palkovits, R.; Antonietti, M.; Kuhn, P.; Thomas,
A.; Schuth, F. Angew. Chem., Int. Ed. 2009, 48, 6909. (d) Chen, L.;
̈
Yang, Y.; Guo, Z.; Jiang, D. Adv. Mater. 2011, 23, 3149. (e) McKeown,
N. B.; Hanif, S.; Msayib, K.; Tattershall, C. E.; Budd, P. M. Chem.
Commun. 2002, 2782. (f) McKeown, N. B.; Makhseed, S.; Budd, P. M.
Chem. Commun. 2002, 2780. (g) Budd, P. M.; Ghanem, B.; Msayib, K.;
McKeown, N. B.; Tattershall, C. J. Mater. Chem. 2003, 13, 2721.
(9) Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu,
J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. Angew. Chem., Int. Ed.
2009, 48, 9457.
(10) (a) Lu, W. G.; Yuan, D. Q.; Zhao, D.; Schilling, C. I.; Plietzsch,
O.; Muller, T.; Brase, S.; Guenther, J.; Blumel, J.; Krishna, R.; Li, Z.;
Zhou, H. C. Chem. Mater. 2010, 22, 5964. (b) Trewin, A.; Cooper, A.
I. Angew. Chem., Int. Ed. 2010, 49, 1533.
(11) Yuan, D.; Lu, W.; Zhao, D.; Zhou, H. Adv. Mater. 2011, 23, 90.
(12) (a) Gu, S.; Cai, R.; Luo, T.; Chen, Z.; Sun, M.; Liu, Y.; He, G.;
Yan, Y. Angew. Chem., Int. Ed. 2009, 48, 6499. (b) Ghassemi, H.; Riley,
D. J.; Curtis, M.; Bonaplata, E.; McGrath, J. E. Appl. Organomet. Chem.
1998, 12, 781. (c) Sefkow, M.; Borsuk, N.; Wolff, M. O. Chim. Oggi
2001, 19, 19. (d) Dupont, J.; deSouza, R. F.; Suarez, P. A. Z. Chem.
Rev. 2002, 102, 3667. (e) Sefkow, M.; Borsuk, N.; Wolff, M. O. Chim.
Oggi 2001, 19, 35. (f) Leffler, J. E.; Temple, R. D. J. Am. Chem. Soc.
1967, 89, 5235.
(13) Clark, T. J.; Robertson, N. J.; Kostalik, H. A. IV; Lobkovsky, E.
B.; Mutolo, P. F.; Abruna, H. D.; Coates, G. W. J. Am. Chem. Soc.
2009, 131, 12888.
(14) Calvo, S.; Castao, F.; Basterretxea, F. J. J. Mol. Struct. 2010, 975,
190.
ASSOCIATED CONTENT
■
S
* Supporting Information
1H and 13C NMR spectra, TGA curves, IR, XPS, and WAXD
spectra for polymers and monomers. This material is available
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
(15) Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.;
ACKNOWLEDGMENTS
Pierotti, R. A.; Rouquer
1985, 57, 603.
́
ol, J.; Siemieniewska, T. Pure Appl. Chem.
■
This research was financially supported by the National Basic
Research Program of China (nos. 2009CB623401,
2012CB932802) and the National Science Foundation of
China (nos. 51133008, 50825302, and 51021003).
(16) Rose, M.; Bohlmann, W.; Sabo, M.; Kaskel, S. Chem. Commun.
2008, 44, 2462.
(17) Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Niu, H.; Jones, J. T.
A.; Khimyak, Y. Z.; Cooper, A. I. J. Am. Chem. Soc. 2008, 130, 7710.
(18) (a) Zhu, J.; Kailasam, K.; Xie, X.; Schomaecker, R.; Thomas, A.
Chem. Mater. 2011, 23, 2062. (b) Zhang, Y.; Riduan, S. N.; Ying, J. Y.
Chem.Eur. J. 2009, 15, 1077.
REFERENCES
■
(1) (a) McKeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675.
(b) Morris, R. E.; Wheatley, P. S. Angew. Chem., Int. Ed. 2008, 47,
4966. (c) Jiang, J. X.; Wang, C.; Laybourn, A.; Hasell, T.; Clowes, R.;
Khimyak, Y. Z.; Xiao, J.; Higgins, S. J.; Adams, D. J.; Cooper, A. I.
Angew. Chem., Int. Ed. 2011, 50, 1072.
(2) (a) Thomas, A. Angew. Chem., Int. Ed. 2010, 49, 8328.
(b) Thomas, A.; Driess, M. Angew. Chem., Int. Ed. 2009, 48, 1890.
(c) Weber, J.; Thomas, A. J. Am. Chem. Soc. 2008, 130, 6334. (d) Cho,
H. C.; Lee, H. S.; Chun, J.; Lee, S. M.; Kim, H. J.; Son, S. U. Chem.
Commun. 2011, 47, 917.
(19) Chen, L.; Yang, Y.; Jiang, D. J. Am. Chem. Soc. 2010, 132, 9138.
(20) Chaikittisilp, W.; Kubo, M.; Moteki, T.; Sugawara-Narutaki, A.;
Shimojima, A.; Okubo, T. J. Am. Chem. Soc. 2011, 133, 13832.
(21) (a) Xiong, Y.; Wang, H.; Wang, R.; Yan, Y.; Zheng, B.; Wang, Y.
Chem. Commun. 2010, 46, 3399. (b) Tian, J.; Cai, F.; Wang, J.; Du, Y.;
He, L. Phosphorus, Sulfur Silicon Relat. Elem. 2008, 183, 494.
(c) Nishikubo, T.; Kameyama, A.; Yamashita, J.; Tomoi, M.;
Fukuda, W. J. Polym Sci. Part A. Polym. Chem. 1993, 31, 939.
(d) Xiong, Y.; Wang, H.; Wang, R.; Yan, Y.; Zheng, B.; Wang, Y.
Chem. Commun. 2010, 46, 3399.
(3) (a) Du, N.; Park, H. B.; Robertson, G. P.; Dal-Cin, M. M.; Visser,
T.; Scoles, L.; Guiver, M. D. Nat. Mater. 2011, 10, 372. (b) Weber, J.;
Du, N.; Guiver, M. D. Macromolecules 2011, 44, 1763.
(22) (a) Ogasawara, S.; Kato, S. J. Am. Chem. Soc. 2010, 132, 4608.
(b) Zhu, J.; Xie, X.; Carabineiro, S. A. C.; Tavares, P. B.; Figueiredo, J.
(4) (a) Schwab, M. G.; Lennert, A.; Pahnke, J.; Jonschker, G.; Koch,
M.; Senkovska, I.; Rehahn, M.; Kaskel, S. J. Mater. Chem. 2011, 21,
L.; Schomacker, R.; Thomas, A. Energy Environ. Sci. 2011, 4, 2020.
(c) Chen, Z.; Cui, Z.; Niu, F.; Jiang, L.; Song, W. Chem. Commun.
̈
2987
dx.doi.org/10.1021/ma300278d | Macromolecules 2012, 45, 2981−2988